Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 83(7): 749-59, 2003 Sep 30.
Article in English | MEDLINE | ID: mdl-12889015

ABSTRACT

Lactic acid fermentations were performed with plastic-composite-support (PCS) disks in solvent-saturated media with Lactobacillus casei subsp. rhamnosus (ATCC 11443). The PCS disks contained 50% (w/w) polypropylene, 35% (w/w) ground soybean hulls, 5% (w/w) yeast extract, 5% (w/w) soybean flour, and 5% (w/w) bovine albumin. Bioassays were performed by growing L. casei in solvent-saturated media after soaking the PCS disks. Eighteen different solvent and carrier combinations were evaluated. Overall, L. casei biofilm fermentation demonstrated the same lactic acid production in solvent-saturated medium as suspended cells in medium without solvents (control). To evaluate PCS solvent-detoxifying properties, two bioassays were developed. When solvent-saturated medium in consecutive equal volumes (10 mL then 10 mL) was exposed to PCS, both media demonstrated lactic acid fermentation equal to the control. However, when solvent-saturated medium with two consecutive unequal volumes (10 mL then 90 mL) was exposed to PCS, some degree of toxicity was observed. Furthermore, iso-octane, tributylphosphate (TBP), and Span 80 were optimized for recovery as 91%, 5%, and 4% (v/v), respectively, with a 1:1 ratio of 1.2 M Na(2)CO(3) stripping solution. Also, recovery by emulsion liquid extraction in the hollow-fiber contactor was minimal due to low recovery at pH 5.0 and incompatibility of the solvent and hollow-fiber material. These results suggest that PCS biofilm reactors can benefit lactic acid fermentation by eliminating the toxic effect from solvent leakage into the fermentation medium from liquid-liquid extractive integrated fermentations.


Subject(s)
Biofilms , Bioreactors , Industrial Microbiology/methods , Lactic Acid/metabolism , Lacticaseibacillus casei/metabolism , Solvents/toxicity , Culture Media , Fermentation , Hydrogen-Ion Concentration , Lacticaseibacillus casei/growth & development , Membranes, Artificial , Plastics , Solvents/chemistry
2.
Plant Dis ; 84(2): 192-197, 2000 Feb.
Article in English | MEDLINE | ID: mdl-30841314

ABSTRACT

Response of electronic, printed-circuit wetness sensors was compared to visual observations of free water on processing-tomato leaflets during 13 dew-onset and 11 dew-dryoff events. Deployment angle and painting of the sensor surface significantly (P < 0.01) influenced the mean absolute time difference between observation of the first wet or dry leaflet at the top of the tomato canopy and the start of sensor response (kΩ) to dew onset or dryoff, respectively. Compass orientation of painted sensors deployed at 45° to horizontal had no significant effect on response to dew onset or dryoff. For sensors deployed at 45° during dew onset, mean absolute time difference between the first observed wet leaflet and the start of unpainted sensor response was 4.00 h, compared to 0.58 and 1.09 h for sensors with three and nine coats of paint, respectively. At deployment angles of 30 or 0°, paint coating had a lesser influence on time differences between visual observation and sensor response to dew onset. During dew dryoff, absolute time differences between visual confirmation of the first dry leaflet and the start of sensor response were ≤1.03 h for all sensors. Trends were similar when the visual observation criterion was 50% wet or dry leaflets during dew onset or dryoff, respectively, rather than first wet or dry leaflet. Standard deviation of sensor response during dew onset was generally larger for unpainted sensors than for sensors with three coats of paint, especially when deployed at a 45° angle. The apparent temperature of unpainted sensors at 0 or 30° deployment angles decreased much more rapidly during the period preceding dew onset than for painted sensors at the same deployment angles, whose apparent temperatures cooled at rates similar to those of tomato leaflets positioned at these angles. The results indicate that deployment angle can significantly affect accuracy and precision of dew-duration measurements by unpainted, but not painted, electronic wetness sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...