Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Adv Radiat Oncol ; 7(6): 101009, 2022.
Article in English | MEDLINE | ID: mdl-36092987

ABSTRACT

Purpose: A radiation anatomist was trained and integrated into clinical practice at a multi-site academic center. The primary objective of this quality improvement study was to determine whether a radiation anatomist improves the quality of organ-at-risk (OAR) contours, and secondarily to determine the impact on efficiency in the treatment planning process. Methods and Materials: From March to August 2020, all patients undergoing computed tomography-based radiation planning at 2 clinics at Memorial Sloan Kettering Cancer Center were assigned using an "every other" process to either (1) OAR contouring by a radiation anatomist (intervention) or (2) contouring by the treating physician (standard of care). Blinded dosimetrists reported OAR contour quality using a 3-point scoring system based on a common clinical trial protocol deviation scale (1, acceptable; 2, minor deviation; and 3, major deviation). Physicians reported time spent contouring for all cases. Analyses included the Fisher exact test and multivariable ordinal logistic regression. Results: There were 249 cases with data available for the primary endpoint (66% response rate). The mean OAR quality rating was 1.1 ± 0.4 for the intervention group and 1.4 ± 0.7 for the standard of care group (P < .001), with subset analysis showing a significant difference for gastrointestinal cases (n = 49; P <.001). Time from simulation to contour approval was reduced from 3 days (interquartile range [IQR], 1-6 days) in the control group to 2 days (IQR, 1-5 days) in the intervention group (P = .007). Both physicians and dosimetrists self-reported decreased time spent contouring in the intervention group compared with the control group, with a decreases of 8 minutes (17%; P < .001) and 5 minutes (50%; P = .002), respectively. Qualitative comments most often indicated edits required to bowel contours (n = 14). Conclusions: These findings support improvements in both OAR contour quality and workflow efficiency with implementation of a radiation anatomist in routine practice. Findings could also inform development of autosegmentation by identifying disease sites and specific OARs contributing to low clinical efficiency. Future research is needed to determine the potential effect of reduced physician time spent contouring OARs on burnout.

2.
Adv Radiat Oncol ; 6(4): 100732, 2021.
Article in English | MEDLINE | ID: mdl-34409216

ABSTRACT

PURPOSE: This review article aims to consolidate information regarding existing and emerging implanted devices used in patients undergoing radiation therapy and to categorize levels of attention needed for each device, including which devices require monitoring throughout treatment. METHODS AND MATERIALS: Based on the collective information from scholar searches, manufacturers' technical reports, and institutional experiences in the past years, commonly present devices in patients with cancer are compiled. This work summarizes cardiac pacemaker, implanted cardiac defibrillator, hepatic pump, intrathecal pain pump, neurostimulator, shunt, loop recorder, and mediport. Three different classifications of implanted devices can be made based on the potential effect of radiation: life-dependent, nonlife-dependent but with adverse effects if overdosed, and devices without electronic circuits. Implanted devices that contain electronic circuits that would be life-dependent or have adverse effects if overdosed, include cardiac pacemakers, implanted cardiac defibrillators, programmable hepatic pumps, pain pumps, neurostimulators, and loop recorders. RESULTS: Dose exposure to these devices need to be calculated or measured in vivo, especially for cardiac implanted devices, and they should be minimized to assure continued healthy functioning. Treatment planning techniques should be chosen to reduce entry, exit and internal scatter dose. Lower energy photon beams should be used to decrease potential neutron contamination. Implanted devices without electronic circuits are less of a concern. If a patient is life-dependent on the implanted device, it is not recommended to treat the patient with proton therapy. CONCLUSIONS: This study reviewed the management of patients with commonly seen implanted devices and summarized a workflow for identifying and planning when a patient has implanted devices. Classifications of implanted devices could help clinicians make proper decisions in regard to patients with specific implanted devices. Lastly, the management of such devices in the era of the pandemic is also discussed in this review article.

3.
J Appl Clin Med Phys ; 22(5): 182-190, 2021 May.
Article in English | MEDLINE | ID: mdl-33779052

ABSTRACT

PURPOSE: This study aimed to evaluate and compare different system calibration methods from a large cohort of systems to establish a commissioning procedure for surface-guided frameless cranial stereotactic radiosurgery (SRS) with intrafractional motion monitoring and gating. Using optical surface imaging (OSI) to guide non-coplanar SRS treatments, the determination of OSI couch-angle dependency, baseline drift, and gated-delivered-dose equivalency are essential. METHODS: Eleven trained physicists evaluated 17 OSI systems at nine clinical centers within our institution. Three calibration methods were examined, including 1-level (2D), 2-level plate (3D) calibration for both surface image reconstruction and isocenter determination, and cube phantom calibration to assess OSI-megavoltage (MV) isocenter concordance. After each calibration, a couch-angle dependency error was measured as the maximum registration error within the couch rotation range. A head phantom was immobilized on the treatment couch and the isocenter was set in the middle of the brain, marked with the room lasers. An on-site reference image was acquired at couch zero, the facial region of interest (ROI) was defined, and static verification images were captured every 10° for 0°-90° and 360°-270°. The baseline drift was assessed with real-time monitoring of the motionless phantom over 20 min. The gated-delivered-dose equivalency was assessed using the electron portal imaging device and gamma test (1%/1mm) in reference to non-gated delivery. RESULTS: The maximum couch-angle dependency error occurs in longitudinal and lateral directions and is reduced significantly (P < 0.05) from 1-level (1.3 ± 0.4 mm) to 2-level (0.8 ± 0.3 mm) calibration. The MV cube calibration does not further reduce the couch-angle dependency error (0.8 ± 0.2 mm) on average. The baseline drift error plateaus at 0.3 ± 0.1 mm after 10 min. The gated-delivered-dose equivalency has a >98% gamma-test passing rate. CONCLUSION: A commissioning method is recommended using the 3D plate calibration, which is verified by radiation isocenter and validated with couch-angle dependency, baseline drift, and gated-delivered-dose equivalency tests. This method characterizes OSI uncertainties, ensuring motion-monitoring accuracy for SRS treatments.


Subject(s)
Radiosurgery , Humans , Patient Positioning , Phantoms, Imaging , Radiotherapy Dosage , Skull
4.
J Appl Clin Med Phys ; 20(7): 121-127, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31206236

ABSTRACT

PURPOSE: To determine the impact of using fiducial match for daily image-guidance on pelvic lymph node (PLN) coverage for prostate cancer patients receiving stereotactic body radiation therapy (SBRT). METHODS: Thirty patients underwent SBRT treatment to the prostate and PLN from 2014 to 2016. Each patient received either 800cGy × 5 or 500cGy × 5 to the prostate and 500cGy × 5 to the PLN. A 5 mm clinical target volume (CTV)-to-planning target volume (PTV) margin around the PLN was used for planning. Two registrations with planning computed tomography (PCT) for each of the daily cone beam CTs (CBCTs) were performed: a rigid registration to fiducials and to the bony anatomy. The average translational difference between fiducial and bony match as well as percentage of fractions with differences > 5mm were calculated. Changes in bladder and rectal volume as well as center-of-mass (COM) position from simulation parameters, and their correlation with translational difference were also evaluated. The dosimetric impact of the translational differences was calculated by shifting the plan isocenter. RESULTS: The average translational difference between fiducial and bony match was 0.06 ± 0.82, 2.1 ± 4.1, -2.8 ± 4.3, and 5.5 ± 4.2 mm for lateral, vertical, longitudinal, and vector directions. The average change in bladder and rectal volume from simulation was -67.2 ± 163.04 cc (-12 ± 52%) and -1.6 ± 18.75 (-2 ± 30%) cc. The average change in COM of bladder from the simulation position was 0.34 ± 2.49, 4.4 ± 8.1, and -3.9 ± 7.5 mm along the LR, AP, and SI directions. The corresponding COM change for the rectum was 0.17 ± 1.9, 1.34 ± 3.5, and -0.6 ± 5.2 mm. CONCLUSIONS: The 5 mm margin covered ~75% of fractions receiving PLN irradiation with SBRT, daily CBCT and fiducial-guided setup. The dosimetric impact on PLN coverage was significant in 19% of fractions or 25% of patients. A larger translational shift was due to variation in rectal volume and changes in COM position of the bladder and rectum. A consistent bladder positioning and/or rectum filling compared with presimulation volume were essential for adequate coverage of PLN in a hypofractionated treatment regime.


Subject(s)
Image Processing, Computer-Assisted/methods , Lymph Nodes/radiation effects , Pelvis/radiation effects , Prostatic Neoplasms/surgery , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Cone-Beam Computed Tomography/methods , Humans , Male , Organs at Risk/radiation effects , Prognosis , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
5.
Phys Med ; 30(8): 941-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24842080

ABSTRACT

This pilot study compared the detectability of internal thermal marks produced with MRI-guided focused ultrasound (MRgFUS) on MRI, computed tomography (CT), ultrasonography (US), and color images from digital scanning. Internal marks made using MRgFUS could potentially guide surgical, biopsy or radiotherapy procedures. New Zealand White rabbits (n = 6) thigh muscle were marked using a Philips MRgFUS system. Before and after sonications, rabbits were imaged using T1- and T2-weighted MRI. Then rabbits were sacrificed and imaging was performed using CT and US. After surgical excision specimens were scanned for color conspicuity analysis. Images were read by a radiologist and quantitative analysis of signal intensity was calculated for marks and normal muscle. Of a total of 19 excised marks, approximately 79%, 63%, and 62% were visible on MRI, CT, and US, respectively. The average maximum temperature elevation in the marks during MRgFUS was 39.7 ± 10.1 °C, and average dose diameter (i.e., the diameter of the area that achieved a thermal dose greater than 240 cumulative equivalent minutes at 43 °C) of the mark at the focal plane was 7.3 ± 2.1 mm. On MRI the average normalized signal intensities were significantly higher in marks compared to normal muscle (p < 0.05). On CT, the marked regions were approximately 10 HU lower than normal muscle (p < 0.05). The results demonstrate that MRgFUS can be used to create internal marks that are visible on MRI, CT and US.


Subject(s)
Diagnostic Imaging/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Ultrasonography/adverse effects , Ultrasonography/methods , Animals , Biopsy , Color , Edema/pathology , Hot Temperature , Muscle, Skeletal/pathology , Pilot Projects , Rabbits , Radiation, Ionizing , Reproducibility of Results
6.
J Appl Clin Med Phys ; 13(2): 3739, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22402391

ABSTRACT

Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a noninvasive image-guided technique used to thermally ablate solid tumors. During treatment, ultrasound reflections from distal media interfaces can shift prescribed treatment locations. The purpose of this study was to investigate the effect of normal incidence reflections from air, acrylic (modeling bone), and rubber on treatment location, temperature elevation, and heating patterns by performing ultrasound exposures in a tissue-mimicking phantom and in ex vivo porcine tissue using a clinical MR-HIFU platform. The results demonstrated a shift in treatment location toward the distal interface when targeted closer than 2 cm from the interface, especially for acrylic. Our study demonstrated that the ultrasound wave reflections from a distal air interface had less effect than the acrylic interface (modeling bone) on the heating pattern and focal location. This study provides useful information to better understand the limitations and safety concerns of performing MR-HIFU treatments with commercial clinical equipment.


Subject(s)
Biomimetic Materials , High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Ultrasonic Therapy/instrumentation , Ultrasonics , Animals , Female , Leiomyoma/therapy , Magnetic Resonance Imaging/instrumentation , Swine , Ultrasonic Therapy/methods , Uterine Neoplasms/therapy
7.
Med Phys ; 39(3): 1309-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22380363

ABSTRACT

PURPOSE: This study investigates the feasibility of T(2)∗ to be a diagnostic indicator of early breast cancer in a mouse model. T(2)∗ is sensitive to susceptibility effects due to local inhomogeneity of the magnetic field, e.g., caused by hemosiderin or deoxyhemoglobin. In these mouse models, unlike in patients, the characteristics of single mammary ducts containing pure intraductal cancer can be evaluated. METHODS: The C3(1)SV40Tag mouse model of breast cancer (n = 11) and normal FVB∕N mice (n = 6) were used to measure T(2)∗ of normal mammary gland tissue, intraepithelial neoplasia, invasive cancers, mammary lymph nodes, and muscle. MRI experiments were performed on a 9.4T animal scanner. High resolution (117 microns) axial 2D multislice gradient echo images with fat suppression were acquired first to identify inguinal mammary gland. Then a multislice multigradient echo pulse sequence with and without fat suppression were performed over the inguinal mammary gland. The modulus of a complex double exponential decay detected by the multigradient echo sequence was used to fit the absolute proton free induction decay averaged over a region of interest to determine the T(2)∗ of water and fat signals. RESULTS: The measured T(2)∗ values of tumor and muscle are similar (∼15 ms), and almost twice that of lymph nodes (∼8 ms). There was a statistically significant difference (p < 0.03) between T(2)∗ in normal mammary tissue (13.7 ± 2.9 ms) and intraductal cancers (11 ± 2.0 ms) when a fat suppression pulse was applied. CONCLUSIONS: These are the first reported T(2)∗ measurements from single mammary ducts. The results demonstrated that T(2)∗ measurements may have utility for identifying early pre-invasive cancers in mouse models. This may inspire similar research for patients using T(2)∗ for diagnostic imaging of early breast cancer.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating/diagnosis , Magnetic Resonance Imaging/methods , Mammary Glands, Animal/cytology , Mammary Neoplasms, Animal/diagnosis , Mammary Neoplasms, Animal/pathology , Animals , Carcinoma, Intraductal, Noninfiltrating/pathology , Female , Mammary Glands, Animal/pathology , Mice , Neoplasm Invasiveness , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...