Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 20687, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450837

ABSTRACT

Human-induced climate change has increased the frequency and intensity of heavy precipitation1. Due to the complexity of runoff generation and the streamflow process, the historical impact of human-induced climate change on river flooding remains uncertain. Here, we address the question of whether anthropogenic climate change has altered the probability of the extreme river flood events for the period 1951-2010 based on simulated river discharge derived from large ensemble climate experiments with and without human-induced climate change. The results indicate that human-induced climate change altered the probabilities of 20 of the 52 analyzed flood events. Fourteen of these 20 flood events, which occurred mainly in Asia and South America, were very likely to have been enhanced by human-induced climate change due to an increase in heavy precipitation. Conversely, two flood events in North/South America and two flood events in Asia and two flood events in Europe were suppressed by human-induced climate change, perhaps as a result of lower snowfall. Human-induced climate change has enhanced flooding more prominently in recent years, providing important insights into potential adaptation strategies for river flooding.


Subject(s)
Floods , Implosive Therapy , Humans , Global Warming , Rivers , Climate Change
2.
Sci Rep ; 11(1): 3740, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580166

ABSTRACT

Estimates of future flood risk rely on projections from climate models. The relatively few climate models used to analyze future flood risk cannot easily quantify of their associated uncertainties. In this study, we demonstrated that the projected fluvial flood changes estimated by a new generation of climate models, the collectively known as Coupled Model Intercomparison Project Phase 6 (CMIP6), are similar to those estimated by CMIP5. The spatial patterns of the multi-model median signs of change (+ or -) were also very consistent, implying greater confidence in the projections. The model spread changed little over the course of model development, suggesting irreducibility of the model spread due to internal climate variability, and the consistent projections of models from the same institute suggest the potential to reduce uncertainties caused by model differences. Potential global exposure to flooding is projected to be proportional to the degree of warming, and a greater threat is anticipated as populations increase, demonstrating the need for immediate decisions.

3.
Mass Spectrom (Tokyo) ; 9(1): A0081, 2020.
Article in English | MEDLINE | ID: mdl-32547895

ABSTRACT

Serotonin, an important neurotransmitter, is produced mainly in intestines, and serotonin levels in feces can be an indicator of the intestinal environment. Human feces, however, contain a large amount of contaminants, which vary widely owing to food contents and the intestinal environment, and these contaminants would be expected to interfere with the determination of serotonin levels in human feces. To remove these contaminants and determine serotonin levels, we developed a new method using solid phase extraction (SPE) and column-switching LC-MS/MS. Serotonin, labeled with a stable isotope, was added to human feces samples prior to SPE as an internal standard to correct for individual differences in matrix effects. The recovery rate for SPE was 55.9-81.0% (intraday) and 56.5-78.1% (interday) for feces from two subjects. We analyzed 220 fecal samples from 96 subjects including 76 pregnant and post-delivery women. The endogenous serotonin content per unit weight of dried feces was 0.09-14.13 ng/mg for pregnant and post-delivery women and 0.30-9.93 ng/mg for the remaining subjects.

4.
Sci Rep ; 9(1): 3483, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837575

ABSTRACT

The Paris agreement was adopted to hold the global average temperature increase to well below 2 °C and pursue efforts to limit it to 1.5 °C. Here, we investigate the event-to-event hydroclimatic intensity, where an event is a pair of adjacent wet and dry spells, under future warming scenarios. According to a set of targeted multi-model large ensemble experiments, event-wise intensification will significantly increase globally for an additional 0.5 °C warming beyond 1.5 °C. In high latitudinal regions of the North American continent and Eurasia, this intensification is likely to involve overwhelming increases in wet spell intensity. Western and Eastern North America will likely experience more intense wet spells with negligible changes of dry spells. For the Mediterranean region, enhancement of dry spells seems to be dominating compared to the decrease in wet spell strength, and this will lead to an overall event-wise intensification. Furthermore, the extreme intensification could be 10 times stronger than the mean intensification. The high damage potential of such drastic changes between flood and drought conditions poses a major challenge to adaptation, and the findings suggest that risks could be substantially reduced by achieving a 1.5 °C target.

5.
Sci Rep ; 6: 36021, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782160

ABSTRACT

The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.


Subject(s)
Climate Change , Floods , Models, Theoretical , Rivers
6.
Sci Rep ; 6: 29723, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435236

ABSTRACT

Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.

7.
Neurophotonics ; 3(1): 010801, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26788547

ABSTRACT

Optical topography/functional near-infrared spectroscopy (OT/fNIRS) is a functional imaging technique that noninvasively measures cerebral hemoglobin concentration changes caused by neural activities. The fNIRS method has been extensively implemented to understand the brain activity in many applications, such as neurodisorder diagnosis and treatment, cognitive psychology, and psychiatric status evaluation. To assist users in analyzing fNIRS data with various application purposes, we developed a software called platform for optical topography analysis tools (POTATo). We explain how to handle and analyze fNIRS data in the POTATo package and systematically describe domain preparation, temporal preprocessing, functional signal extraction, statistical analysis, and data/result visualization for a practical example of working memory tasks. This example is expected to give clear insight in analyzing data using POTATo. The results specifically show the activated dorsolateral prefrontal cortex is consistent with previous studies. This emphasizes analysis robustness, which is required for validating decent preprocessing and functional signal interpretation. POTATo also provides a self-developed plug-in feature allowing users to create their own functions and incorporate them with established POTATo functions. With this feature, we continuously encourage users to improve fNIRS analysis methods. We also address the complications and resolving opportunities in signal analysis.

8.
Hum Brain Mapp ; 33(9): 2092-103, 2012 Sep.
Article in English | MEDLINE | ID: mdl-21714036

ABSTRACT

Considerable knowledge on neural development related to speech perception has been obtained by functional imaging studies using near-infrared spectroscopy (optical topography). In particular, a pioneering study showed stronger left-dominant activation in the temporal lobe for (normal) forward speech (FW) than for (reversed) backward speech (BW) in neonates. However, it is unclear whether this stronger left-dominant activation for FW is equally observed for any language or is clearer for the mother tongue. We hypothesized that the maternal language elicits clearer activation than a foreign language in newborns because of their prenatal and/or few-day postnatal exposure to the maternal language. To test this hypothesis, we developed a whole-head optode cap for 72-channel optical topography and visualized the spatiotemporal hemodynamics in the brains of 17 Japanese newborns when they were exposed to FW and BW in their maternal language (Japanese) and in a foreign language (English). Statistical analysis showed that all sound stimuli together induced significant activation in the bilateral temporal regions and the frontal region. They also showed that the left temporal-parietal region was significantly more active for Japanese FW than Japanese BW or English FW, while no significant difference between FW and BW was shown for English. This supports our hypothesis and suggests that the few-day-old brain begins to become attuned to the maternal language. Together with a finding of equivalent activation for all sound stimuli in the adjacent measurement positions in the temporal region, these findings further clarify the functional organization of the neonatal brain.


Subject(s)
Cerebrovascular Circulation/physiology , Head/anatomy & histology , Speech , Acoustic Stimulation , Brain Mapping , Data Interpretation, Statistical , Electroencephalography , Female , Hemodynamics/physiology , Humans , Infant, Newborn , Language , Male , Prefrontal Cortex/physiology , Temporal Lobe/physiology
9.
Water Res ; 45(8): 2573-86, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21402394

ABSTRACT

This study has analyzed the global nitrogen loading of rivers resulting from atmospheric deposition, direct discharge, and nitrogenous compounds generated by residential, industrial, and agricultural sources. Fertilizer use, population distribution, land cover, and social census data were used in this study. A terrestrial nitrogen cycle model with a 24-h time step and 0.5° spatial resolution was developed to estimate nitrogen leaching from soil layers in farmlands, grasslands, and natural lands. The N-cycle in this model includes the major processes of nitrogen fixation, nitrification, denitrification, immobilization, mineralization, leaching, and nitrogen absorption by vegetation. The previously developed Total Runoff Integrating Pathways network was used to analyze nitrogen transport from natural and anthropogenic sources through river channels, as well as the collecting and routing of nitrogen to river mouths by runoff. Model performance was evaluated through nutrient data measured at 61 locations in several major world river basins. The dissolved inorganic nitrogen concentrations calculated by the model agreed well with the observed data and demonstrate the reliability of the proposed model. The results indicate that nitrogen loading in most global rivers is proportional to the size of the river basin. Reduced nitrate leaching was predicted for basins with low population density, such as those at high latitudes or in arid regions. Nitrate concentration becomes especially high in tropical humid river basins, densely populated basins, and basins with extensive agricultural activity. On a global scale, agriculture has a significant impact on the distribution of nitrogenous compound pollution. The map of nitrate distribution indicates that serious nitrogen pollution (nitrate concentration: 10-50 mg N/L) has occurred in areas with significant agricultural activities and small precipitation surpluses. Analysis of the model uncertainty also suggests that the nitrate export in most rivers is sensitive to the amount of nitrogen leaching from agricultural lands.


Subject(s)
Environmental Monitoring/methods , Models, Chemical , Nitrogen/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Nitrogen Cycle
10.
Rev Sci Instrum ; 79(6): 066106, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18601442

ABSTRACT

We have developed an effective technique for aiding the design and evaluating the performance of the probe caps used to perform optical topography (OT) on infants. To design and evaluate a probe cap, it is necessary to determine the measurement positions for conducting OT on the brain surface of subjects. One technique for determining these positions on the brain surface is to find their three-dimensional (3D) coordinates using a 3D magnetic space digitizer, which consists of a 3D magnetic source and a 3D magnetic sensor. The problem with this technique is that it takes a long time to determine all the measurement points on the subject's head and it is difficult to use with infants. It is a particular problem with infants who cannot support their own heads. Therefore, we have developed a real model of an infant subject's head based on 3D magnetic resonance (MR) images. The model is made from an optical-curable resin using 3D computer-aided-format coordinate data taken from 3D MR image-format coordinate data. We have determined the measurement positions on the surface of the model corresponding to a scalp using a 3D magnetic space digitizer and displayed the positions on a 3D MR image of the infant's brain. Using this technique, we then determined the actual 72 measurement positions located over the entire brain surface area for use with our new whole-head probe cap for neonates and infants. This method is useful for evaluating the performance of and designing probe caps.


Subject(s)
Brain , Head , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Models, Anatomic , Humans , Infant , Infant, Newborn
11.
Neuroimage ; 33(2): 580-7, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16935008

ABSTRACT

We have developed a wavelet-based method of detecting body-movement artifacts in optical topography (OT) signals. Although OT, which is a noninvasive imaging technique for measuring hemodynamic response related to brain activation, is particularly useful for studying infants, the signals occasionally contain undesirable artifacts caused by body movements, so data corrupted by body-movement artifacts must be eliminated to obtain reliable results. For this purpose, we applied a wavelet transform to automatically detect body-movement artifacts in OT signals. We measured OT signals from nine healthy infants in response to speech stimuli. After the continuous signals had been divided into blocks (a block is a time series of OT signal in a 30-s period including a 10-s stimulation period), they were classified into two groups (movement blocks and non-movement blocks) according to whether the participants moved or not by video judgment. Using those data, we developed a wavelet-based algorithm for detecting body-movement artifacts at a high discrimination rate being consistent with the actual body-movement state. The wavelet method has two parameters (scale and threshold), and a Monte Carlo analysis gave the mean optimal parameters as 9+/-1.9 (mean+/-standard deviation) for the scale and as 42.7+/-1.9 for the threshold. Our wavelet method with the mean optimal parameters (scale=9, threshold=43) achieved a higher discrimination rate (mean+/-standard deviation: 86.3+/-8.8%) for actual body movement than a previous method (mean+/-standard deviation: 80.6+/-8.7%) among different participants (paired t test: t(8)=2.92, p<0.05). These results demonstrate that our wavelet method is useful in practice for eliminating blocks containing body-movement artifacts in OT signals. It will contribute to obtaining reliable results from OT studies of infants.


Subject(s)
Artifacts , Brain Mapping , Brain/anatomy & histology , Brain/physiology , Motor Activity/physiology , Female , Humans , Infant, Newborn , Male , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...