Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 47(5): 1054-1057, 2024.
Article in English | MEDLINE | ID: mdl-38811191

ABSTRACT

Glycosaminoglycans (GAGs), such as heparan sulfate (HS), play essential roles in living organisms. Understanding the functionality of HS and its involvement in disease progression necessitates the sensitive and quantitative detection of HS-derived unsaturated disaccharides. Conventionally, fluorescence derivatization precedes the HPLC analysis of these disaccharides. However, the presence of excess unreacted derivatization reagents can inhibit rapid and sensitive analysis in chromatographic determinations. In this study, we describe analytical methods that use dansylhydrazine as a derivatization agent for the detection and determination of HS-derived unsaturated disaccharides using HPLC. In addition, we have developed a straightforward method for removing excess unreacted reagent using a MonoSpin NH2 column. This method may be employed to remove excess pre-labeling reagents, thereby facilitating the analysis of HS-derived unsaturated disaccharides with satisfactory reproducibility.


Subject(s)
Dansyl Compounds , Disaccharides , Heparitin Sulfate , Chromatography, High Pressure Liquid/methods , Heparitin Sulfate/chemistry , Heparitin Sulfate/analysis , Disaccharides/analysis , Dansyl Compounds/chemistry , Hydrazines/chemistry , Spectrometry, Fluorescence/methods , Fluorescence
2.
Sci Rep ; 8(1): 2950, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440726

ABSTRACT

Amide bond formation serves as a fundamental reaction in chemistry, and is practically useful for the synthesis of peptides, food additives, and polymers. However, current methods for amide bond formation essentially generate wastes and suffer from poor atom economy under harsh conditions. To solve these issues, we demonstrated an alternative synthesis method for diverse tryptophyl-N-alkylamides by the combination of the first adenylation domain of tyrocidine synthetase 1 with primary or secondary amines as nucleophiles. Moreover, the physiological role of this domain is L-phenylalanine adenylation; however, we revealed that it displayed broad substrate flexibility from mono-substituted tryptophan analogues to even D-tryptophan. To the best of our knowledge, this is the first evidence for an adenylating enzyme-mediated direct amide bond formation via a sequential enzymatic activation of amino acids followed by nucleophilic substitution by general amines. These findings facilitate the design of a promising tool for biocatalytic straightforward amide bond formation with less side products.


Subject(s)
Adenosine Monophosphate/metabolism , Amides/chemistry , Peptide Synthases/metabolism , Phenylalanine/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...