Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959648

ABSTRACT

Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.

2.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984026

ABSTRACT

The precise observation of a solid-liquid interface by means of frequency modulation atomic force microscopy (FM-AFM) was performed, demonstrating its applicability to a study on lead acid batteries using an electrochemical test cell for in-liquid FM-AFM embedded with a specialized cantilever holder. The consistency and reproducibility of each surface profile observed via amplitude modulation AFM and FM-AFM were verified properly in a strong acidic electrolyte. In terms of FM-AFM, the ability to observe remarkable changes in the force mapping is the most beneficial, especially near the negative electrode surface. The localization of lignosulfonate (LS) added into the electrolyte as an expander could be visualized since this characteristic force mapping was captured when LS was added to electrolyte.

3.
Materials (Basel) ; 15(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234069

ABSTRACT

Biofilms have caused many problems, not only in the industrial fields, but also in our daily lives. Therefore, it is important for us to control them by evaluating them properly. There are many instrumental analytical methods available for evaluating formed biofilm qualitatively. These methods include the use of Raman spectroscopy and various microscopes (optical microscopes, confocal laser microscopes, scanning electron microscopes, transmission electron microscopes, atomic force microscopes, etc.). On the other hand, there are some biological methods, such as staining, gene analyses, etc. From the practical viewpoint, staining methods seem to be the best due to various reasons. Therefore, we focused on the staining method that used a crystal violet solution. In the previous study, we devised an evaluation process for biofilms using a color meter to analyze the various staining situations. However, this method was complicated and expensive for practical engineers. For this experiment, we investigated the process of using regular photos that were quantified without any instruments except for digitized cameras. Digitized cameras were used to compare the results. As a result, we confirmed that the absolute values were different for both cases, respectively. However, the tendency of changes was the same. Therefore, we plan to utilize the changes before and after biofilm formation as indicators for the future.

4.
Materials (Basel) ; 15(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35806818

ABSTRACT

Biofilms are a result of bacterial activities and are found everywhere. They often form on metal surfaces and on the surfaces of polymeric compounds. Biofilms are sticky and mostly consist of water. They have a strong resistance to antimicrobial agents and can cause serious problems for modern medicine and industry. Biofilms are composed of extracellular polymeric substances (EPS) such as polysaccharides produced from bacterial cells and are dominated by water at the initial stage. In a series of experiments, using Escherichia coli, we developed three types of laboratory biofilm reactors (LBR) to simulate biofilm formation. For the first trial, we used a rotary type of biofilm reactor for stirring. For the next trial, we tried another rotary type of reactor where the circular plate holding specimens was rotated. Finally, a circular laboratory biofilm reactor was used. Biofilms were evaluated by using a crystal violet staining method and by using Raman spectroscopy. Additionally, they were compared to each other from the practical (industrial) viewpoints. The third type was the best to form biofilms in a short period. However, the first and second were better from the viewpoint of "ease of use". All of these have their own advantages and disadvantages, respectively. Therefore, they should be properly selected and used for specific and appropriate purposes in the future.

5.
Sensors (Basel) ; 22(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591238

ABSTRACT

Biofilms are the result of bacterial activity. When the number of bacteria (attached to materials' surfaces) reaches a certain threshold value, then the bacteria simultaneously excrete organic polymers (EPS: extracellular polymeric substances). These sticky polymers encase and protect the bacteria. They are called biofilms and contain about 80% water. Other components of biofilm include polymeric carbon compounds such as polysaccharides and bacteria. It is well-known that biofilms cause various medical and hygiene problems. Therefore, it is important to have a sensor that can detect biofilms to solve such problems. Graphene is a single-atom-thick sheet in which carbon atoms are connected in a hexagonal shape like a honeycomb. Carbon compounds generally bond easily to graphene. Therefore, it is highly possible that graphene could serve as a sensor to monitor biofilm formation and growth. In our previous study, monolayer graphene was prepared on a glass substrate by the chemical vapor deposition (CVD) method. Its biofilm forming ability was compared with that of graphite. As a result, the CVD graphene film had the higher sensitivity for biofilm formation. However, the monolayer graphene has a mechanical disadvantage when used as a biofilm sensor. Therefore, for this new research project, we prepared bilayer graphene with high mechanical strength by using the CVD process on copper substrates. For these specimens, we measured the capacitance component of the specimens' impedance. In addition, we have included a discussion about the possibility of applying them as future sensors for monitoring biofilm formation and growth.


Subject(s)
Cardiovascular Diseases , Graphite , Bacteria , Biofilms , Carbon , Electric Impedance , Humans , Polymers
6.
Materials (Basel) ; 15(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35329724

ABSTRACT

The sulfuric acid permeation and biofilm formation behaviors of polysiloxane films have been investigated, and simple methods for evaluating the sulfuric acid permeation and biofilm formation behaviors have been proposed in this paper. The polysiloxane films used in these experiments were practically impermeable to the aqueous sulfuric acid solution, and the amount of biofilm formation varied depending on the composition of the films. Further, the amount of sulfuric acid permeation can be estimated by measuring the polarization curves of polysiloxane films with different thicknesses formed on iron electrodes. By measuring the adhesion work of pure water and simulated biofilm droplets on polysiloxane films of different compositions, we can estimate the resistance of biofilm formation on the polysiloxane films.

7.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971779

ABSTRACT

Steelmaking slags are a promising resource as artificial seaweed beds for the reconstitution of marine environments. To grow seaweed well, the formation of biofilms is an essential process in biofouling. This study focused on the formation of initial biofilms on steelmaking slag samples and analyzed the resulting bacterial communities using the next-generation sequencing technique. Three types of steelmaking slag were submerged in an area of Ise Bay in Mie Prefecture, Japan, for 3 and 7 days in the summer and winter seasons to allow the formation of biofilms. The bacterial communities of these biofilms were richer in sulfur-oxidizing bacteria compared to the biofilms formed on polyurethane sponges. It was found that Helicobacteraceae dominantly grew on the biofilms formed on the slag samples. This shows that steelmaking slags have potential to be used as artificial seaweed beds and marine water purifiers.


Subject(s)
Bacteria/growth & development , Bacterial Physiological Phenomena , Biofilms/growth & development , Seasons , Steel , Water Microbiology , Water , Japan , Metallurgy
8.
Materials (Basel) ; 13(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092999

ABSTRACT

In this study, we examined the relationship between the effect of a zinc coating on protecting carbon steel against biofilm formation in both air and water environments. SS400 carbon steel coupons were covered with a zinc thermal spray coating or copper thermal spray coating. Coated coupons were exposed to either air or water conditions. Following exposure, the surface conditions of each coupon were observed using optical microscopy, and quantitatively analyzed using an x-ray fluorescence analyzer. Debris on the surface of the coupons was used for biofilm analysis including crystal violet staining for quantification, Raman spectroscopic analysis for qualification, and microbiome analysis. The results showed that the zinc thermal spray coating significantly inhibited iron corrosion as well as biofilm formation in both air and water environments. The copper thermal spray coating, however, accelerated iron corrosion in both air and water environments, but accelerated biofilm formation only in a water environment. microbially-influenced-corrosion-related bacteria were barely detected on any coupons, whereas biofilms were detected on all coupons. To summarize these results, electrochemical corrosion is dominant in an air environment and microbially influenced corrosion is strongly involved in water corrosion. Additionally, biofilm formation plays a crucial rule in carbon steel corrosion in both air and water, even though microbially-influenced-corrosion-related bacteria are barely involved in this corrosion.

9.
Sci Rep ; 9(1): 8070, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147580

ABSTRACT

A biofilm has a unique structure composed of microorganisms, extracellular polymeric substances (EPSs), etc., and it is layered on a substrate in water. In material science, it is important to detect the biofilm formed on a surface to prevent biofouling. EPSs, the major component of the biofilm, mainly consist of polysaccharides, proteins, nucleic acids, and lipids. Because these biomolecules have a variety of hydrophilicities or hydrophobicities, the substrate covered with the biofilm shows different wettability from the initial state. To detect the biofilm formation, this study employed a liquid-squeezing-based wettability assessment method with a simple wettability index: the liquid-squeezed diameter of a smaller value indicates higher wettability. The method is based on the liquid-squeezing behaviour of a liquid that covers sample surfaces when an air-jet is applied. To form the biofilm, polystyrene surfaces were immersed and incubated in a water-circulated bioreactor that had collected microorganisms in ambient air. After the 14-d incubation, good formation of the biofilm on the surfaces was confirmed by staining with crystal violet. Although the contact angles of captive bubbles on the surfaces with the biofilm were unmeasurable, the liquid-squeezing method could distinguish between hydrophilic and hydrophobic initial surfaces with and without biofilm formation using the diameter of the liquid-squeezed area. The surface wettability is expected to be a promising property for in-situ detection of biofilm formation on a macroscopic scale.


Subject(s)
Biofilms , Biofouling/prevention & control , Extracellular Polymeric Substance Matrix/chemistry , Materials Science/methods , Coloring Agents/chemistry , Gentian Violet/chemistry , Hydrophobic and Hydrophilic Interactions , Materials Science/instrumentation , Microbiological Techniques/instrumentation , Microbiological Techniques/methods , Staining and Labeling/methods , Surface Properties , Water/chemistry , Wettability
10.
Materials (Basel) ; 9(10)2016 Oct 11.
Article in English | MEDLINE | ID: mdl-28773945

ABSTRACT

A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)-cultured solution with E-coli formed over 48-72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

SELECTION OF CITATIONS
SEARCH DETAIL
...