Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(38): e2303673, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37288981

ABSTRACT

With molecularly well-defined and tailorable 2D structures, covalent organic frameworks (COFs) have emerged as leading material candidates for chemical sensing, storage, separation, and catalysis. In these contexts, the ability to directly and deterministically print COFs into arbitrary geometries will enable rapid optimization and deployment. However, previous attempts to print COFs have been restricted by low spatial resolution and/or post-deposition polymerization that limits the range of compatible COFs. Here, these limitations are overcome with a pre-synthesized, solution-processable colloidal ink that enables aerosol jet printing of COFs with micron-scale resolution. The ink formulation utilizes the low-volatility solvent benzonitrile, which is critical to obtaining homogeneous printed COF film morphologies. This ink formulation is also compatible with other colloidal nanomaterials, thus facilitating the integration of COFs into printable nanocomposite films. As a proof-of-concept, boronate-ester COFs are integrated with carbon nanotubes (CNTs) to form printable COF-CNT nanocomposite films, in which the CNTs enhance charge transport and temperature sensing performance, ultimately resulting in high-sensitivity temperature sensors that show electrical conductivity variation by 4 orders of magnitude between room temperature and 300 °C. Overall, this work establishes a flexible platform for COF additive manufacturing that will accelerate the incorporation of COFs into technologically significant applications.

2.
J Am Chem Soc ; 145(22): 11969-11977, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37216443

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) containing heterotriangulenes have been theoretically identified as semiconductors with tunable, Dirac-cone-like band structures, which are expected to afford high charge-carrier mobilities ideal for next-generation flexible electronics. However, few bulk syntheses of these materials have been reported, and existing synthetic methods provide limited control of network purity and morphology. Here, we report transimination reactions between benzophenone-imine-protected azatriangulenes (OTPA) and benzodithiophene dialdehydes (BDT), which afforded a new semiconducting COF network, OTPA-BDT. The COFs were prepared as both polycrystalline powders and thin films with controlled crystallite orientation. The azatriangulene nodes are readily oxidized to stable radical cations upon exposure to an appropriate p-type dopant, tris(4-bromophenyl)ammoniumyl hexachloroantimonate, after which the network's crystallinity and orientation are maintained. Oriented, hole-doped OTPA-BDT COF films exhibit electrical conductivities of up to 1.2 × 10-1 S cm-1, which are among the highest reported for imine-linked 2D COFs to date.

3.
Chem Rev ; 122(1): 442-564, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34852192

ABSTRACT

Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.


Subject(s)
Polymers , Macromolecular Substances/chemistry , Polymerization , Polymers/chemistry
4.
J Am Chem Soc ; 140(38): 12263-12269, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30221936

ABSTRACT

This Article describes the molecular recognition of peptides containing an N-terminal methionine (Met) by the synthetic receptor cucurbit[8]uril (Q8) in aqueous solution and with submicromolar affinity. Prior work established that Q8 binds with high affinity to peptides containing aromatic amino acids, either by simultaneous binding of two aromatic residues, one from each of two different peptides, or by simultaneous binding of an aromatic residue and its immediate neighbor on the same peptide. The additional binding interface of two neighboring residues suggested the possibility of targeting nonaromatic peptides, which have thus far bound only weakly to synthetic receptors. A peptide library designed to test this hypothesis was synthesized and screened qualitatively for Q8 binding using a fluorescent indicator displacement assay. The large fluorescence response observed for several Met-terminated peptides suggested strong binding, which was confirmed quantitatively by the determination of submicromolar equilibrium dissociation constant values for Q8 binding to MLA, MYA, and MFA using isothermal titration calorimetry (ITC). This discovery of high affinity binding to Met-terminated peptides and, more generally, to nonaromatic peptides prompted a detailed investigation of the determinants of binding in this system using ITC, electrospray ionization mass spectrometry, and 1H NMR spectroscopy for 25 purified peptides. The studies establish the sequence determinants required for high-affinity binding of Met-terminated peptides and demonstrate that cucurbit[ n]uril-mediated peptide recognition does not require an aromatic residue for high affinity. These results, combined with the known ability of cucurbit[ n]urils to target N-termini and disordered loops in folded proteins, suggest that Q8 could be used to target unmodified, Met-terminated proteins.


Subject(s)
Bridged-Ring Compounds/metabolism , Imidazoles/metabolism , Methionine/chemistry , Peptides/metabolism , Amino Acid Sequence , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Peptide Library , Peptides/chemical synthesis , Peptides/chemistry , Protein Binding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...