Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem ; 163(4): 321-328, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29319807

ABSTRACT

Hetero-trimeric aldehyde oxidases of bacterial origin, which use O2 to catalyse the oxidation of various aldehydes but not those of aromatic N-heterocycles, belong to the xanthine oxidase family. In the present study, the crystal structure of a recombinant aldehyde oxidase from Methylobacillus sp. KY4400 (Mb-AOX) was determined at 2.5 Å resolution. The structures of its subunits resemble those of the corresponding subunits or domains of other structurally characterised enzymes belonging to the family, and include a [4Fe-4 S] cluster in the medium subunit like that found in Escherichia coli periplasmic aldehyde oxidoreductase (EP-AOR). A funnel leading to the si-face of the isoalloxazine ring of FAD, which is narrower than those in mouse liver AOX3 and human AOX1, is also present and it is even narrower than that in EP-AOR. The environment surrounding the ring in Mb-AOX and EP-AOR is subtly different, which might account for their different abilities to use O2. A remarkable characteristic of the Mo catalytic centre in Mb-AOX is a tryptophan situated near the centre instead of the alanine present in other xanthine oxidase family members. The tryptophan residue together with other residue differences might play an important role in binding to aldehydes such as n-heptylaldehyde in Mb-AOX.


Subject(s)
Aldehyde Oxidase/chemistry , Methylobacillus/enzymology , Aldehyde Oxidase/isolation & purification , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Sequence Alignment
2.
Biosci Biotechnol Biochem ; 72(8): 1999-2004, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18685206

ABSTRACT

Debaryomyces vanrijiae MH201 produces formate oxidase (FOD) at estimated pI values by native isoelectric focusing of 5.1, 5.4, and 5.9. We cloned and expressed three formate oxidase cDNAs, FOD1, FOD2, and FDO3, of the yeast using Escherichia coli. The open reading frames of FOD1, FOD2, and FDO3 were 1,731 bp long, and encoded 576-amino acid polypeptides with molecular masses of 64,142, 63,794, and 63,836 Da respectively. Expression of FOD1, FOD2, and FOD3 resulted in the production of three isozymes, with pI values of 5.1, 5.9, and 5.9 respectively. Co-expression of FOD1 and FOD2 and of FOD1 and FOD3 resulted in the production of additional isozymes with pI values, of 5.4. The three amino acid sequences of FOD1, FOD2, and FOD3 contained a consensus motif of a flavin adenine dinucleotide binding site in their N-terminal parts and a glucose-methanol-choline oxidoreductase signature pattern, suggesting that formate oxidase ought to be classified in the glucose-methanol-choline oxidoreductase family.


Subject(s)
Formates/metabolism , Gene Expression Regulation, Enzymologic , Oxidoreductases/metabolism , Saccharomycetales/enzymology , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression , Isoelectric Focusing , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Phylogeny , Saccharomycetales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...