Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
J Comput Chem ; 45(3): 183-192, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37707426

ABSTRACT

The core ionization energies of second- and third-period elements of the molecules C2 H5 NO2 , SiF4 , Si(CH3 )4 , PF3 , POF3 , PSF3 , CS2 , OCS, SO2 , SO2 F2 , CH3 Cl, CFCl3 , SF5 Cl, and Cl3 PS are calculated by using Hartree-Fock (HF), and Kohn-Sham (KS) with BH&HLYP, B3LYP, and LC-BOP functionals. We used ΔSCF, Slater's transition state (STS), and two previously proposed shifted STS (1) and shifted STS (2) methods, which have been developed. The errors of ΔSCF and STS come mainly from the self-interaction errors (SIE) and can be corrected with a shifting scheme. In this study, we used the shifting parameters determined for each atom. The shifted STS (1) reproduces ΔSCF almost perfectly with mean absolute deviations (MAD) of 0.02 eV. While ΔSCF and STS vary significantly depending on the functional used, the variation of shifted STS (2) is small, and all shifted STS (2) values are close to the observed ones. The deviations of the shifted STS (2) from the experiment are 0.24 eV (BH&HLYP), 0.19 eV (B3LYP), and 0.23 eV (LC-BOP). These results further support the use of shifted STS methods for predicting the core ionization energies.

2.
J Phys Chem A ; 127(38): 7954-7963, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37703090

ABSTRACT

In the present study, we investigate the use of the ΔSCF method and Slater's transition state (STS) theory to calculate the binding energies of the 2s and 2p electrons of third-period elements (P, S, and Cl). Both the Hartree-Fock (HF) and Kohn-Sham (KS) approximations are examined. The STS approximation performs well in reproducing the ΔSCF values. However, for the ΔSCF method itself, while the binding energy of the 2p electrons is accurately predicted, the results for 2s are fairly sensitive to the functional, exhibiting significant variations due to self-interaction errors (SIE). Nonetheless, the variations in chemical shifts between different species remain relatively small, and the values agree with experiments due to the cancellation of SIE. A notable observation is that the chemical shifts of the 2s and 2p electrons are similar, indicating a perturbation caused by the valence electrons. The error in the absolute binding energy of KS ΔSCF against the experiment is nearly constant for the same element in different molecules, and it depends largely on the functional owing to SIE. A shifting scheme previously developed can be employed to reproduce the experimental 2s and 2p binding energies, with dependence on the functional and atom but not on the molecule even for 2s KS ΔSCF binding energies. Upon obtaining the corrected binding energies, we find that the gap between 2s and 2p binding energy is nearly independent of chemical environment for a given element: 57.5, 63.9, and 70.9 eV for the elements P, S, and Cl, respectively.

3.
J Chem Phys ; 158(6): 064112, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792520

ABSTRACT

The core ionization energies of the second-period and third-period elements are studied by ΔSCF and Slater's transition state (STS) theory by using Hartree-Fock (HF) and Kohn-Sham (KS) approximations. Electron correlation increases the estimated core ionization energies, while the self-interaction error (SIE) decreases them, especially for the third-period elements and is a more significant factor. As a result, while HF lacks electron correlation, it is free of SIE and reasonably predicts the core ionization energies. The core ionization energies calculated by HF STS are very close to those calculated by HF ΔSCF, showing that STS reasonably describes the relaxation of the core hole. The core ionization energies calculated by KS are particularly sensitive to the SIE of the functional used, with functionals having less SIE yielding more accurate ΔSCF core ionization energies. Consequently, BH&HLYP gives better results than B3LYP and LC-BOP since BH&HLYP is the hybrid functional with high proportion of the exact HF exchange. Although the core ionization energies are underestimated by ΔSCF due to SIE, STS gives larger core ionization energies than ΔSCF due to a concave behavior of the error curves of STS, which is also related to SIE. The mean absolute deviations of STS relative to ΔSCF, and relative to the experiment, are almost constant regardless of the nuclei among the element in the second period, and likewise among those in the third period. The systematic nature suggests that shifting the STS core ionization energies may be useful. We propose the shifted STS (1) for reproducing ΔSCF values, and the shifted STS (2) to reproduce the observed ones for KS calculations. Both schemes work quite well. The calculated results of KS ΔSCF and STS vary depending on the functional. However, the variation of each species' shifted STS (2) is very small, and all shifted STS (2) values are close to the observed ones. As the shifted STS require only one SCF calculation, they are simple and practical for predicting the core ionization energies.

4.
J Chem Phys ; 156(11): 114112, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317592

ABSTRACT

We generalize Slater's transition state concept by deriving systematic higher-order transition state approximations. Numerical validation is performed by the calculation of transition energies for various excitations, including core, valence, and charge-transfer excitations, at Hartree-Fock and Kohn-Sham density functional theory levels. All higher-order transition state approximations introduced in this study accurately reproduce the results from delta self-consistent-field calculations. In particular, we demonstrate that the third-order generalized transition state (GTS3) approximation is a promising alternative to the original, owing to a good balance between the accuracy and computational cost. We also demonstrate that accurate and reliable results can be obtained with a low computational cost by combining the GTS3 approximation with the transition potential scheme.

5.
J Phys Condens Matter ; 34(19)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35158348

ABSTRACT

The Kohn-Sham density functional theory (KS-DFT) with the long-range corrected (LC) functional is applied to the benchmark dataset of 401 valence ionization potentials (IPs) of 63 small molecules of Chong, Gritsenko and Baerends (the CGB set). The vertical IP of the CGB set are estimated as negative orbital energies within the context of the Koopmans' prediction using the LCgau-core range-separation scheme in combination with PW86-PW91 exchange-correlation functional. The range separation parameterµof the functional is tuned to minimize the error of the negative HOMO orbital energy from experimental IP. The results are compared with literature data, includingab initioIP variant of the equation-of-motion coupled cluster theory with singles and doubles (IP-EOM-CCSD), the negative orbital energies calculated by KS-DFT with the statistical averaging of orbital potential, and those with the QTP family of functionals. The optimally tuned LC functional performs better than other functionals for the estimation of valence level IP. The mean absolute deviations (MAD) from experiment and from IP-EOM-CCSD are 0.31 eV (1.77%) and 0.25 eV (1.46%), respectively. LCgau-core performs quite well even with fixedµ(not system-dependent). Aµvalue around 0.36 bohr-1gives MAD of 0.40 eV (2.42%) and 0.33 eV (1.96%) relative to experiment and IP-EOM-CCSD, respectively. The LCgau-core-PW86-PW91 functional is an efficient alternative to IP-EOM-CCSD and it is reasonably accurate for outer valence orbitals. We have also examined its application to core ionization energies of C(1s), N(1s), O(1s) and F(1s). The C(1s) core ionization energies are reproduced reasonably [MAD of 46 cases is 0.76 eV (0.26%)] but N(1s), O(1s) and F(1s) core ionization energies are predicted less accurately.

6.
J Phys Chem A ; 125(49): 10507-10513, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34874170

ABSTRACT

We present an approximate approach for the calculation of ionization potential (IP) and electron affinity (EA) by exploiting the complementary energy non-linearity errors for a species M and its one-electron-ionized counterpart (M+). Reasonable IPs and EAs are thus obtained by averaging the orbital energies of M and M+, even with a low-level method such as BLYP/6-31G(d). By combining the corrected IPs and EAs, we can further obtain reasonable excitation energies. The errors in uncorrected valence IPs and uncorrected virtual-orbital energies show systematic trends. These characteristics provide a convenient and computationally efficient avenue for qualitative estimation of these properties with single corrections for multiple IPs and excitation energies.

7.
J Chem Phys ; 155(3): 034101, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34293872

ABSTRACT

We have extended Slater's transition state concept for the approximation of the difference in total energies of the initial and final states by three orbital energies of initial, final, and half-way Slater's transition states of the system. Numerical validation was performed with the ionization energies for H2O, CO, and pyrrole by calculation using Hartree-Fock (HF) and Kohn-Sham (KS) theories with the B3LYP and LCgau-core-BOP functionals. The present extended method reproduces full ΔSCF very accurately for all occupied orbitals obtained with HF and for valence orbitals obtained with KS. KS core orbitals have some errors due to the self-interaction errors, but the present method significantly improves the core electron binding energies. In its current form, the newly derived theory may not yet be practically useful, but it is simple and conceptually useful for gaining improved understanding of SCF-type orbital theories.

8.
J Phys Chem A ; 125(16): 3489-3502, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33874719

ABSTRACT

In the present study, we have investigated the applicability of long-range-corrected (LC) functionals to a Kohn-Sham (KS) Koopmans'-type theorem. Specifically, we have examined the performance of optimally tuned LCgau-core functionals (in combination with BOP and PW86-PW91 exchange-correlation functionals) by calculating the ionization potential (IP) within the context of Koopmans' prediction. In the LC scheme, the electron repulsion operator, 1/r12, is divided into short-range and long-range components using a standard error function, with a range separation parameter µ determining the weight of the two ranges. For each system that we have examined (H2O, CO, benzene, N2, HF, H2CO, C2H4, and five-membered ring compounds cyclo-C4H4X, with X = CH2, NH, O, and S, and pyridine), the value of µ is optimized to minimize the deviation of the negative HOMO energy from the experimental IP. Our results demonstrate the utility of optimally tuned LC functionals in predicting the IP of outer valence levels. The accuracy is comparable to that of highly accurate ab initio theory. However, our Koopmans' method is less accurate for the inner valence and core levels. Overall, our results support the notion that orbitals in KS-DFT, when obtained with the LC functional, provide an accurate one-electron energy spectrum. This method represents a one-electron orbital theory that is attractive in its simple formulation and effective in its practical application.

9.
J Phys Chem A ; 124(50): 10482-10494, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33275438

ABSTRACT

The core electron binding energies (CEBEs) and core-level excitation energies of thymine, adenine, cytosine, and uracil are studied by the Kohn-Sham (KS) method with long-range corrected (LC) functionals. The CEBEs are estimated according to the Koopmans-type theorem for density functional theory. The excitation energies from the core to the valence π* and Rydberg states are calculated as the orbital energy differences between core-level orbitals of a neutral parent/cation and unoccupied π* or Rydberg orbitals of its cation. The model is intuitive, and the spectra can easily be assigned. Core excitation energies from oxygen 1s, nitrogen 1s, and carbon 1s to π* and Rydberg states, and the chemical shifts, agree well with previously reported theoretical and experimental data. The straightforward use of KS orbitals in this scheme carries the advantage that it can be applied efficiently to large systems such as biomolecules and nanomaterials.


Subject(s)
Nucleic Acids/chemistry , Density Functional Theory , Nucleic Acid Conformation , Quantum Theory , Thermodynamics
10.
J Phys Chem A ; 124(39): 8079-8087, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32901484

ABSTRACT

Previously proposed theoretical schemes for estimating one-electron excitation energies using Kohn-Sham (KS) solutions with long-range corrected (LC) functionals are applied to the charge-transfer (CT) excitations of the ethylene···tetrafluoroethylene (C2H4-C2F4) system, and the CT complex between an aromatic donor (Ar = benzene, toluene, o-xylene, naphthalene, anthracene, and various meso-substituted anthracenes) and the tetracyanoethylene (TCNE) acceptor. The CT excited state is described well as a single-electron excitation between specific orbitals of donor and acceptor. Thus, CT excitation energies are well approximated by the orbital energies because of the satisfaction of the Koopmans-type theorem and the asymptotic behavior of the LC functional. We have examined three computational schemes: scheme 1 employs the orbital energies for the neutral and cationic systems, scheme 2 utilizes orbital energies of just the cation, and in scheme 3, because the electron affinity of a molecule is the ionization energy of its anion, a scale factor is applied to enforce this identity. The present schemes reproduce the correct asymptotic behavior of CT excitation energy of C2H4···C2F4 for the long intermolecular distances and give good agreement with accurate ab initio results. Calculated CT excitation energies for Ar-TCNE are compared with those of TD-DFT and ΔSCF methods. Scheme 1 with the optimal range-separation parameter µ accurately reproduces CT excitation energies for all Ar-TCNE systems and gives good agreement with the best TD-DFT calculations and experiment. Scheme 1, scheme 3, and TD-DFT show similar tendencies with respect to the variation in µ. Scheme 2 and ΔSCF approaches are rather insensitive to changes in µ, but both considerably underestimate the CT excitation energies for these systems. KS orbital energies are physically meaningful and they are practically useful; if the range-separation parameter is tuned, then good results can be obtained.

11.
J Phys Chem Lett ; 11(18): 7882-7885, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32893637

ABSTRACT

We present an approximate approach for the simulation of UV/vis spectra using conventional [non-time-dependent (non-TD)] DFT computations. It uses Kohn-Sham orbitals and orbital energies to estimate both the excitation energies and the associated oscillator strengths. For a wide range of systems from small molecules to large molecular dyes used in electrochromic and solar-cell applications, reasonable UV/vis spectra are generated, each with just two conventional DFT computations. The accuracy is generally comparable to what one would expect from TD-DFT calculations. In comparison to TD-DFT, the protocol of the present study provides an intuitive and notably more rapid means for simulating electronic absorption properties. It enables efficient screening of materials for a wide range of relevant applications.

12.
J Chem Phys ; 152(10): 104105, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171211

ABSTRACT

Several different types of density functional theory (DFT) exchange correlation functionals were applied to a periodic boundary condition (PBC) system [carbon monoxide (CO) adsorbed on Cu(111): CO/Cu(111)] and the differences in the results calculated using these functionals were compared. The exchange correlation functionals compared were those of Perdew-Burke-Ernzerhof (PBE) and those of long-range corrected density functional theory (LC-DFT), such as LC-ωPBE(2Gau) and LC-BLYP(2Gau). Solid state properties such as the partial density of states were calculated in order to elucidate the detailed adsorption mechanisms and back-bonding peculiar to the CO/Cu(111) system. In addition, our benchmark analysis of the correlations among the orbitals of CO and Cu metal using LC-DFT reasonably was in line with the experimentally observed adsorption site. The computation time was reasonable, and other numerical results were found to agree well with the experimental results and also with the theoretical results of other researchers. This suggests that the long-range Hartree-Fock exchange integral should be included to correctly predict the electronic nature of PBC systems.

13.
J Comput Chem ; 41(14): 1368-1383, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32108955

ABSTRACT

A new simple and conceptual theoretical scheme is proposed for estimating one-electron excitation energies using Kohn-Sham (KS) solutions. One-electron transitions that are dominated by the promotion from one initially occupied orbital to one unoccupied orbital of a molecular system can be expressed in a two-step process, ionization, and electron attachment. KS with long-range corrected (LC) functionals satisfies Janak's theorem and LC total energy varies almost linearly as a function of its fractional occupation number between the integer electron points. Thus, LC reproduces ionization energies (IPs) and electron affinities (EAs) with high accuracy and one-electron excitation energies are expressed as the difference between the occupied orbital energy of a neutral molecule and the corresponding unoccupied orbital energy of its cation. Two such expressions can be used, with one employing the orbital energies for the neutral and cationic systems, while the other utilizes orbital energies of just the cation. Because the EA of a molecule is the IP of its anion, if we utilize this identity, the two expressions coincide and give the same excitation energies. Reasonable results are obtained for valence and core excitations using only orbital energies.

14.
Phys Chem Chem Phys ; 21(32): 17859-17867, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31378789

ABSTRACT

The redox switching of non-alternant azulenequinone/hydroquinone molecules is investigated using density functional theory and the nonequilibrium Green's function. We examined the electronic transport properties of these molecules when subtended between gold electrodes. The results indicated that the reduction of 1,5-azulenequinone and oxidation of 1,7-azulene hydroquinone 2,6-dithiolate lead to a significant enhancement of the current compared to the respective oxidation of 1,5-azulene hydroquinone and reduction of 1,7-azulenequinone, thus "switching on" the transmission. The significance of the position of the functional group on the switching behavior has been analyzed and whether destructive quantum interference exists in the electron transport of the 1,5 position in particular has been addressed. Our work provides theoretical foundations for organic redox switching components in nanoelectronic circuits.

15.
J Phys Chem A ; 123(32): 7034-7041, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31322358

ABSTRACT

We have previously reported that, whereas conventional density functional theory (DFT) functionals have provided poor calculations on the alkane isodesmic reaction energy and isomerization reaction energy of organic molecules that include C, N, and O atoms, our developed long-range corrected (LC)- and LC including Gaussian attenuation (LCgau)-DFT + local response dispersion (LRD) functionals, which can accurately calculate inter- and intramolecular weak interactions, give accurate isomerization energies on these reactions. In this work, we found that B3LYP-D3, LC-ωPBE-D3, and ωB97XD, known for their good descriptions of weak interaction calculations, fail to reproduce the isomerization reaction energies of the molecules that include the S atom, such as methyl-thiourea, ethyl-thiourea, and propyl-thiourea. In contrast, LC- and LCgau-BOP+LRD functionals provide isomerization reaction energies that are very close to those produced by highly accurate wave function methods. These results show that an accurate description of the intramolecular weak interaction between the alkyl group and the S atom, unlike in the case of urea, is significant to reproduce the correct energy of the molecules with an alkyl group and S atom.

16.
J Chem Theory Comput ; 15(2): 1255-1264, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30701966

ABSTRACT

Fullerenes are sheets of sp2 carbon atoms wrapped around to form spheres. With this simple consideration, we have in the present study devised and (with over 3600 DFT data points) successfully validated a simple model, termed R+D, for estimating the relative energies of fullerenes. This model contains a resonance component to account for the intrinsic differences between the π-energies of different fullerenes, and a deformation component for treating the distortions from planarity. Notably, we find that both terms (and they alone) are required to obtain good relative energies, which lends support to the formulation of the R+D model. An interesting finding is that for some medium-sized IPR fullerenes, their isomers show similar variations in the two components. We deduce that these fullerenes may represent a good opportunity for tuning molecular properties for practical applications. We hope that the promising results of the present study will encourage further investigations into fullerenes from a fundamental perspective.

17.
J Comput Chem ; 40(1): 29-38, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30226643

ABSTRACT

In the present study, we have reparametrized the HISS exchange functional. The new "reHISS" exchange provides a balance between short- and mid-range Hartree-Fock exchange (HFX) and a large total HFX coverage, with a fast convergence to zero HFX in the long range. The five parameters in this functional (according to equations 3 and 4 in the main text) are cSR = 0.15, cMR = 2.5279, cLR = 0, ωSR = 0.27, and ωLR = 0.2192. The combination of reHISS exchange with a reparametrized B97c-type correlation functional (Chan et al., J. Comput. Chem. 2017, 38, 2307) and a D2 dispersion term (s6 = 0.6) gives the reHISSB-D method. We find it to be more accurate than related screened-exchange methods and, importantly, its accuracy is more uniform across different properties. Fundamentally, our analysis suggests that the good performance of the reHISS exchange is related to it capturing a near-optimal proportion of HFX in the range of interelectronic distance that is important for many chemical properties, and we propose this range to be approximately 1-4Å. © 2018 Wiley Periodicals, Inc.

18.
J Comput Chem ; 40(1): 105-112, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30451312

ABSTRACT

Recently, we proposed a simple yet efficient method for the computation of a long-range corrected (LC) hybrid scheme [LC-DFT(2Gau)], which uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. This method dramatically reduced the computational time while maintaining the improved features of the LC density functional theory (DFT). Here, we combined an LC hybrid scheme using a two-Gaussian attenuating operator with one-parameter progressive correlation functional and Becke88 exchange functional with varying range-separation parameter values [LC-BOP(2Gau) with various µ values of 0.16, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.42] and demonstrated that LC-BOP(2Gau) reproduces well the thermochemical and frontier orbital energies of LC-BOP. Additionally, we revised the scaling factors of the Gaussian multipole screening scheme for LC-DFT(2Gau) to correspond to the angular momentum of orbitals, which decreased the energy deviations from the energy with the no-screening scheme. © 2018 Wiley Periodicals, Inc.

19.
J Comput Chem ; 38(27): 2307-2315, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28718935

ABSTRACT

In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (cOS,0 = cSS,0 = 1, cOS,1 = -1.5, cOS,2 = -0.644, cSS,1 = -0.5, and cSS,2 = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc.

20.
J Chem Phys ; 146(16): 164102, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28456213

ABSTRACT

Recently, we have investigated the ionization potential (IP) theorem for some small molecules in the presence of external electric field [M. P. Borpuzari et al., J. Chem. Phys. 144, 164113 (2016)]. In this article, we assess the performance of some density functionals, local density approximation, generalized-gradient approximation (GGA), hybrid, meta-GGA hybrid, and range-separated functionals in the presence of two different solvent dielectrics, water and cyclohexane, in reproducing the vertical oxidation energy, reduction energy, and the frontier orbital energies. We also study the accessibility of different computational solvent models like the polarizable continuum model (PCM) and non-equilibrium PCM (NEPCM) in reproducing the desired properties. In general, the range-separated functionals do not perform well in reproducing orbital energies in the PCM. Range separation with the NEPCM is better. It is found that CAM-B3LYP, M06-2X, and ωB97XD functionals reproduce highest occupied molecular orbital energy in solvents, which may be due to the cancellation of PCM and density functional theory errors. Finally, we have tested the validity of the IP theorem in the solvent environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...