Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Brain Sci ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38928531

ABSTRACT

Reproducing instructed movements is crucial for practice in motor learning. In this study, we compared the short-term reproduction of active pelvis movements with visual feedback and passive movement with the therapist's hands in an upright stance. Sixteen healthy males (M age = 34.1; SD = 10.2 years) participated in this study. In one condition, healthy males maintained an upright stance while a physical therapist moved the participant's pelvis (passive movement instruction), and in a second condition, the participant actively moved their pelvis with visual feedback of the target and the online trajectory of the center of pressure (active movement instruction). Reproduction errors (displacement of the center of pressure in the medial-lateral axis) 10 s after the passive movement instruction were significantly greater than after the active movement instruction (p < 0.001), but this difference disappeared 30 s after the instruction (p = 0.118). Error of movement reproduction in the anterior-posterior axis after the passive movement instruction was significantly greater than after the active movement instruction, no matter how long the retention interval was between the instruction and reproduction phases (p = 0.025). Taken together, active pelvis movements with visual feedback, rather than passive movement with the therapist's hand, is better to be used for instructing pelvis movements.

2.
Exp Brain Res ; 242(8): 1957-1970, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918211

ABSTRACT

The purpose of the present study was to elucidate whether an external reference frame contributes to tactile localization in blindfolded healthy humans. In a session, the right forearm was passively moved until the elbow finally reached to the target angle, and participants reached the left index finger to the right middle fingertip. The locus of the right middle fingertip indicated by the participants deviated in the direction of the elbow extension when vibration was provided to the biceps brachii muscle during the passive movement. This finding indicates that proprioception contributes to the identification of the spatial coordinate of the specific body part in an external reference frame. In another session, the tactile stimulus was provided to the dorsal of the right hand during the passive movement, and the participants reached the left index finger to the spatial locus at which the tactile stimulus was provided. Vibration to the biceps brachii muscle did not change the perceived locus of the tactile stimulus indicated by the left index finger. This finding indicates that an external reference frame does not contribute to tactile localization during the passive movement. Humans may estimate the spatial coordinate of the tactile stimulus based on the time between the movement onset and the time at which the tactile stimulus is provided.


Subject(s)
Proprioception , Touch Perception , Humans , Male , Female , Young Adult , Adult , Touch Perception/physiology , Proprioception/physiology , Vibration , Touch/physiology , Muscle, Skeletal/physiology , Fingers/physiology , Movement/physiology , Space Perception/physiology , Physical Stimulation
3.
Somatosens Mot Res ; : 1-8, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785341

ABSTRACT

This study examined whether tactile gating induced by the descending motor command to one finger spreads out to the other fingers to which the command is not delivered and whether this gating is dependent on the target finger to which the command is delivered. The change in perceptual threshold to the digital nerve stimulation of one finger induced by tonic contraction of the first dorsal interosseous or abductor digiti minimi muscle was examined. The perceptual threshold to the digital nerve stimulation of the thumb or little finger was increased by tonic contraction of the abductor digiti minimi muscle. This finding indicates that the descending motor command to the prime mover of the little finger abduction induces tactile gating not only in the finger to which the command is delivered but also in the other finger to which the command is not delivered. Tonic contraction of the first dorsal interosseous muscle did not change the perceptual threshold to the digital nerve stimulation in any finger. This finding means that tactile gating occurs particularly when the descending motor command is delivered to the dependent finger. Spreading out of tactile gating of one finger, to which the descending motor command is not delivered, is likely mediated by surround inhibition.

4.
Percept Mot Skills ; : 315125241253634, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727599

ABSTRACT

In the present study, we examined the immediate effect of allowing healthy participants to view their mirror-reflected body image on static and dynamic balance. We placed a mirror to allow participants to frontally view their own body image while maintaining a quiet stance or while engaged in a dynamic postural standing task. On measures of body sway during quiet stance, there were no effects of this visual feedback, supporting the view that human beings have no central mechanism for viewing the mirror-reflected body image to control body sway during quiet stance. However, the body deviated forward during quiet stance while viewing the mirror-reflected body image, indicating that viewing the mirror-reflected body image contributed to the anterior-posterior positioning of the body, as mediated by an ankle control strategy. For the dynamic standing task, viewing the body image induced unstable peaks of rhythmic lateral shifting of the body weight over the feet. This indicates that viewing the body image caused unstable motor commands for rhythmic lateral weight shifting. When participants made a transition from a bipedal to a unipedal stance in response to a cue, viewing the body image shortened the onset latency of the body sway. Accordingly, viewing the body image seemed to accelerate the motor execution involved in lateral weight shifting, possibly due to predictive activation of the motor system before movement onset. Considered collectively, we found static and dynamic stance balance to be influenced by viewing one's mirror-reflected body image. Viewing the mirror-reflected body image may be a means of changing static and dynamic balance in patients with impaired postural control.

5.
Somatosens Mot Res ; 41(1): 56-62, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36730968

ABSTRACT

AIM: The present study investigated whether observing the finger movement influences the stimulus-response process of the subsequent non-aiming finger movement. METHODS: Participants directed their eyes to the finger. Three auditory cues with 3 s intervals were provided in each trial. The participants abducted and adducted the index finger in response to the second and third cues; the first response was considered to be the previous response and the second response was considered to be the subsequent response. The time taken for the stimulus-response process was measured via reaction time. Vision was allowed from 0 to 1 s after the start cue of the previous response, after the cue of the subsequent response, or after the cues of the previous and subsequent responses. RESULTS: Online visual information of the stationary finger accelerated the stimulus-response process of the non-aiming finger movement. The acceleration of the stimulus-response process induced by online visual information of the stationary finger was cancelled out by the previous response information, but this cancellation is itself then eliminated by the visual information from the previous response. The visual information from the previous response decelerated the stimulus-response process of the subsequent non-aiming movement, but this deceleration was then itself cancelled out by visual information of the stationary finger immediately before the subsequent non-aiming movement. CONCLUSION: Taken together, information regarding the previous response functions as noise interfering with the processes contributing to the subsequent non-aiming movement.


Subject(s)
Fingers , Upper Extremity , Humans , Reaction Time/physiology , Fingers/physiology , Movement/physiology , Cues , Psychomotor Performance/physiology
6.
Brain Sci ; 13(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37891780

ABSTRACT

This present study examined the effect of the laterally moving tactile stimuli (LMTS) to the sole on the anticipatory postural adjustment (APA) of the gait initiation. Thirteen healthy males participated in this study. A sound cue was provided at the beginning of each trial. The participants took three steps forward from a quiet stance at their preferred time after the start cue. The LMTS were delivered to the sole after the start cue. The loci of the tactile stimuli moved from the left- to the right-most side of the sole and then moved from the right- to the left-most side of that in a stimuli cycle. The duration of one stimuli cycle was 960 ms, and this cycle was repeated 16 times in a trial. The APA did not onset at the specific direction or phase of the LMTS, indicating that they did not use any specific phase of the stimuli as a trigger for initiating the gait. The LMTS decreased the amplitude and increased the duration of the APA. Simultaneously, the LMTS increased the time between the APA onset and toe-off of the initial support leg, indicating that they moved slowly when initiating gait during the LMTS. Those findings are explained by the view that the suppression of the APA induced via the LMTS to the sole is caused by the slowing down of the gait initiation due to masking the tactile sensation of the sole.

7.
Percept Mot Skills ; 130(6): 2547-2563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37694874

ABSTRACT

Our purpose in the present study was to examine whether moving tactile stimuli to the sole to mimic moving weight distribution over the feet during gait would influence body sway in quiet stance. Fifteen healthy males maintained the quiet stance, and we delivered moving tactile stimuli to mimic the change in their weight distribution during gait. Moving tactile stimuli did not change the length of the center of pressure (COP) displacement and COP position. Vision decreased the length of the COP, but it did not interact with moving tactile stimuli for the COP length and position. The COP position rhythmically moved in the medial-lateral axis along with the cycle of moving tactile stimuli. The COP was at the lateral peak position at the period at which moving tactile stimuli mimicked the weight distribution in the transition between the swing and stance phases of the gait cycle. This finding may indicate that the body is positioned at the lateral peak position in quiet stance when people perceive the sensation of weight distribution over the feet at the most unstable phase of the gait cycle. We suggest that moving tactile stimuli to the sole may induce medial-lateral body sway before gait initiation for patients with Parkinson's disease to improve their freezing of gait initiation.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Male , Humans , Postural Balance , Gait , Cognition
8.
Motor Control ; 27(4): 897-917, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37643754

ABSTRACT

The present study examined how humans use the target information provided immediately before the onset of motor output to prepare the initial motor command in the target force production task. Twenty healthy individuals participated in this study. A target cursor indicating the target force, and a force cursor indicating the force produced with index finger flexion were presented, and participants produced force in response to the appearance of the force cursor so that it moved toward the target cursor as fast as possible. The rate of force development in a time window of 0-100 ms after the onset of force development, representing the intensity of the initial motor command without online feedback adjustment, was measured. The present findings support the hypotheses that humans use the target information provided immediately before the onset of motor output to prepare the initial motor command, and they simultaneously prepare the initial motor command for the intermediate of multiple potential targets using the information of targets provided in previous trials. Another hypothesis, that humans use the information of the target or motor process of the trial immediately before the current trial to prepare the initial motor command, was not supported.


Subject(s)
Movement , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Feedback , Movement/physiology
9.
Exp Brain Res ; 241(5): 1339-1351, 2023 May.
Article in English | MEDLINE | ID: mdl-37012374

ABSTRACT

The present study examined whether the perceptual sensitivity and excitability of the primary sensory cortex are modulated by the afferent volley from the digital nerve of a conditioned finger within a short period of time. The perceptual threshold of an electrical stimulus to the index finger (test stimulus) was decreased by a conditioning stimulus to the index finger 4 or 6 ms before the test stimulus, or by a stimulus to the middle or ring finger 2 ms before that. This is explained by the view that the afferent volleys from the digital nerves of the fingers converge in the somatosensory areas, causing spatial summation of the afferent inputs through a small number of synaptic relays, leading to the facilitation of perceptual sensitivity. The N20 component of the somatosensory-evoked potential was facilitated by a conditioning stimulus to the middle finger 4 ms before a test stimulus or to the thumb 2 ms before the test stimulus. This is explained by the view that the afferent volley from the digital nerve of the finger adjacent to the tested finger induces lateral facilitation of the representation of the tested finger in the primary sensory cortex through a small number of synaptic relays.


Subject(s)
Evoked Potentials, Somatosensory , Peripheral Nerves , Humans , Evoked Potentials, Somatosensory/physiology , Fingers , Electric Stimulation , Afferent Pathways/physiology
10.
Neuroreport ; 34(8): 436-440, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37096762

ABSTRACT

The purpose of the present study is to investigate whether perceptual sensitivity to digital nerve stimulation is modulated by the afferent volley from the digital nerve of a contralateral finger. Fifteen healthy humans participated in this study. A test stimulus was given to the right-hand index finger, and a conditioning stimulus was given to one of the five fingers on the left hand 20, 30, or 40 ms before the test stimulus. The perceptual threshold of the finger stimulation was measured. The perceptual threshold of the test stimulus was significantly increased by a conditioning stimulus to the left-hand index finger given 40 ms before the test stimulus. In contrast, the threshold was not significantly changed by a conditioning stimulus to any finger other than the index finger. Perceptual sensitivity to digital nerve stimulation is suppressed by the afferent volley from the digital nerve of the contralateral homologous finger. This means that the afferent volley from the digital nerve suppresses the homologous finger representation in the ipsilateral somatosensory areas. These findings can be explained by the view that the afferent volley from the digital nerve of the index finger projects to the index finger representation in the contralateral primary sensory cortex and that the interhemispheric transcallosal inhibitory drive is provided from the secondary sensory cortex to the homologous finger representation in the contralateral secondary sensory cortex.


Subject(s)
Fingers , Hand , Humans , Fingers/physiology , Hand/physiology , Electric Stimulation , Somatosensory Cortex/physiology
11.
Motor Control ; 27(2): 338-353, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36448489

ABSTRACT

This study investigated the process that contributes to the decay of short-term motor memory regarding force reproduction. Participants performed tonic flexion of the right index finger with the target force feedback (criterion phase) and reproduced this force level without feedback 3, 10, 30, or 60 s after the end of the criterion phase (recall phase). The constant error for force reproduction was significantly greater than zero, indicating that information about the somatosensation and/or motor command in the criterion phase is positively biased. Constant and absolute errors were not influenced by the retention interval, indicating that neither bias nor error represents the decay of short-term motor memory over time. Variable error, defined as SD of bias (force in the recall phase minus that in the criterion phase), increased as the retention interval increased. This indicates that the decay of short-term motor memory is represented by the increase in inconsistency of memory bias among the trials. The correlation coefficient of the force between the criterion and recall phases with 3-s retention interval was greater than that with longer intervals. This is explained by the view that the contribution of the information of the practiced force to the force reproduction process is great within 3 s after the end of the practice, but the additional contribution of the noise information becomes greater after this time, causing lesser relative contribution of the information of the practiced force to the force reproduction process.


Subject(s)
Fingers , Memory, Short-Term , Humans , Feedback
12.
Front Hum Neurosci ; 16: 1028700, 2022.
Article in English | MEDLINE | ID: mdl-36569476

ABSTRACT

Under certain conditions, a tactile stimulus to the head induces the movement of the head away from the stimulus, and this is thought to be caused by a defense mechanism. In this study, we tested our hypothesis that predicting the stimulus site of the head in a quiet stance activates the defense mechanism, causing a body to sway to keep the head away from the stimulus. Fourteen healthy male participants aged 31.2 ± 6.8 years participated in this study. A visual cue predicting the forthcoming stimulus site (forehead, left side of the head, right side of the head, or back of the head) was given. Four seconds after this cue, an auditory or electrical tactile stimulus was given at the site predicted by the cue. The cue predicting the tactile stimulus site of the head did not induce a body sway. The cue predicting the auditory stimulus to the back of the head induced a forward body sway, and the cue predicting the stimulus to the forehead induced a backward body sway. The cue predicting the auditory stimulus to the left side of the head induced a rightward body sway, and the cue predicting the stimulus to the right side of the head induced a leftward body sway. These findings support our hypothesis that predicting the auditory stimulus site of the head induces a body sway in a quiet stance to keep the head away from the stimulus. The right gastrocnemius muscle contributes to the control of the body sway in the anterior-posterior axis related to this defense mechanism.

13.
Heliyon ; 8(9): e10470, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36097487

ABSTRACT

This study determined the presence of the muscle responses to the support surface translation in the stance leg during gait and examined the effect of the direction and time point of the translation and that of the cognitive process on the responses. The rectus femoris (RF), biceps femoris (BF), soleus (SOL), and tibialis anterior (TA) muscles in the stance leg were tested. There was no significant effect of cognitive process on the electromyographic (EMG) activity induced by the translation of the support surface. In all muscles except the SOL, the EMG amplitude increased 0-300 â€‹ms after the support surface translation at the initial stance (IS) or middle stance (MS) of the tested leg. This means that the EMG activity in the leg muscles other than the SOL occurs after the support surface translation at the IS or MS no matter the direction of the translation. The EMG amplitude was not changed after the translation at the late stance, indicating that the translation does not influence the EMG amplitude at the double limb support phase with the tested leg behind the other. In the SOL, the EMG amplitude increased after the backward translation at the IS and after the forward translation at the MS, but decreased after the forward translation at the IS, indicating that the support surface translation-induced change in the EMG amplitude of the SOL is dependent on its direction. The change in the EMG amplitude of the TA and RF induced by the forward translation was greatest when the translation was given at the IS. In the SOL, the decrease in the EMG amplitude after the forward translation and the increase in the amplitude after the backward translation were greatest at the IS. Taken together, the change in the EMG amplitude induced by the support surface translation is greatest when the translation is given at the IS. The increase in the EMG amplitude in the TA and RF after the forward translation was greater than that after the backward translation at the IS, indicating that the EMG activity of the frontal leg muscles after the forward translation is greater when the translation is given at the IS.

14.
J Phys Ther Sci ; 34(5): 393-399, 2022 May.
Article in English | MEDLINE | ID: mdl-35527847

ABSTRACT

[Purpose] This study examines the contribution of vision and tactile sensation on body sway during quiet stance. [Participants and Methods] Sixteen healthy participants maintained quiet stance. The mean distance between the neutral center of pressure (COP) and that at the peak deviated position, indicating how quickly humans initiate the swaying of the body back to the neutral position, was calculated (COPpeak). [Results] The displacement of the COP in both the anterior-posterior and medial-lateral axes was greater when vision was occluded. The anterior or posterior COPpeak was also greater when vision was occluded. The leftward COPpeak was greater when the tactile sensation of the sole was masked. Visual occlusion decreased the tactile perception threshold of the sole. There was no significant interaction between the effect of vision and that of tactile sensation on body sway during quiet stance. [Conclusion] Vision plays a role in returning the body to the neutral position, particularly in the anterior-posterior axis. Tactile sensation contributes particularly to recovery from the leftward body sway during quiet stance. Tactile sensitivity is enhanced by visual occlusion through inter-modal reweighting. However, inter-modal reweighting between vision and tactile sensation is not specifically for postural control during quiet stance.

15.
Neuroscience ; 494: 82-93, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35588919

ABSTRACT

The present study examined whether tactile perception of the fingertip modulates excitability of the motor cortex supplying the intrinsic hand muscle and whether this modulation is specific to the fingertip stimulated and the muscle and hand tested. Tactile stimulation was given to one of the five fingertips in the left or right hand, and transcranial magnetic stimulation eliciting motor evoked potential in the first dorsal interosseous muscle (FDI) or abductor digiti minimi was given 200 ms after the onset of tactile stimulation. The corticospinal excitability of the FDI at rest was suppressed by the tactile stimulation of the right middle fingertip, but such suppression was absent for the other fingers stimulated and for the other muscle or hand tested. The persistence and amplitude of the F-wave was not significantly influenced by tactile stimulation of the fingertip in the right hand. These findings indicate that tactile perception of the right middle fingertip suppresses excitability of the motor cortex supplying the right FDI at rest. The suppression of corticospinal excitability was absent during tonic contraction of the right FDI, indicating that the motor execution process interrupts the tactile perception-induced suppression of motor cortical excitability supplying the right FDI. These findings are in line with a view that the tactile perception of the right middle finger induces surround inhibition of the motor cortex supplying the prime mover of the finger neighboring the stimulated finger.


Subject(s)
Back Muscles , Motor Cortex , Touch Perception , Electromyography , Evoked Potentials, Motor/physiology , Hand/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation
16.
Front Hum Neurosci ; 15: 763582, 2021.
Article in English | MEDLINE | ID: mdl-34955787

ABSTRACT

The purpose of the present study was to elucidate whether the sympathetic response to perturbation in stance represents multiple mental responses, whether perturbation-induced fear of fall is one of the mental responses, and whether the sympathetic response is task specific. While healthy humans maintained stance, the support surface of the feet translated in the forward or backward direction. The phasic electrodermal response (EDR), representing the sympathetic response, appeared 1-1.5 s after the support surface translation. Mostly, perturbation-induced EDRs comprised one peak, but some EDRs were comprised of two peaks. The onset latency of the two-peak EDR was much shorter than that of the one-peak EDR. The second peak latency of the two-peak EDR was similar to the peak latency of the one-peak EDR, indicating that the first peak of the two-peak EDR was an additional component preceding the one-peak EDR. This finding supports a view that perturbation-induced EDR in stance sometimes represents multiple mental responses. The amplitude of the EDR had a positive and significant correlation with fear, indicating that perturbation-induced EDR in stance partially represents perturbation-induced fear of fall. The EDR amplitude was dependent on the translation amplitude and direction, indicating that perturbation-induced EDR in stance is a task specific response. The EDR appeared earlier when the participants prepared to answer a question or when the perturbation was self-triggered, indicating that adding cognitive load induces earlier perturbation-induced mental responses.

17.
Front Hum Neurosci ; 15: 761514, 2021.
Article in English | MEDLINE | ID: mdl-34776910

ABSTRACT

Previous studies have shown that current movement is influenced by the previous movement, which is known as the previous trial effect. In this study, we investigated the influence of the inter-trial interval, movement observation, and hand dominance on the previous trial effect of the non-target discrete movement. Right-handed healthy humans abducted the index finger in response to a start cue, and this task was repeated with constant inter-trial intervals. The absolute difference in the reaction time (RT) between the previous and current trials increased as the inter-trial interval increased. The absolute difference in RT reflects the reproducibility of the time taken for the motor execution between two consecutive trials. Thus, the finding supported the view that there is a carryover of movement information from one trial to the next, and that the underlying reproducibility of the RT between the two consecutive trials decays over time. This carryover of movement information is presumably conveyed by implicit short-term memory, which also decays within a short period of time. The correlation coefficient of the RT between the previous and current trials decreased with an increase in the inter-trial interval, indicating that the common responsiveness of two consecutive trials weakens over time. The absolute difference was smaller when the response was performed while observing finger movement, indicating that a carryover of the visual information to the next trial enhances the reproducibility of the motor execution process between consecutive trials. Hand dominance did not influence the absolute difference or correlation coefficient, indicating that the central process mediating previous trial effect of hand movement is not greatly lateralized.

18.
Motor Control ; 25(4): 553-574, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34294606

ABSTRACT

This study examined whether the current movement follows the previous movement and whether this process is enhanced by somatosensory stimulation or is gated while retrieving and using the memory of the previously practiced target end point. Healthy humans abducted the index finger to a previously practiced target (target movement) or abducted it freely without aiming at the target (nontarget movement). The end point of the nontarget movement had a positive correlation with the previous nontarget movement only when somatosensory stimulation was given during the previous movement, indicating that the current nontarget movement follows the previous nontarget movement with somatosensory stimulation. No conclusive evidence of whether this process is gated by retrieving and using the memory of the previously practiced target was found.


Subject(s)
Fingers , Movement , Electric Stimulation , Humans
19.
Brain Sci ; 11(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073345

ABSTRACT

This study investigated whether the motor execution process of one finger movement in response to a start cue is influenced by the participation of another finger movement and whether the process of the finger movement is dependent on the movement direction. The participants performed a simple reaction time (RT) task, the abduction or flexion of one (index or little finger) or two fingers (index and little fingers). The RT of the prime mover for the finger abduction was significantly longer than that for the flexion, indicating that the time taken for the motor execution of the finger response is dependent on the movement direction. The RT of the prime mover was prolonged when the abduction of another finger, whose RT was longer than the flexion, was added. This caused closer RTs between the prime movers for a two-finger response compared with the RTs for a one finger response. The absolute difference in the RT between the index and little finger responses became smaller when two fingers responded together compared with one finger response. Those results are well explained by a view that the common motor drive triggers the prime movers when two fingers move together in response to a start cue.

20.
Front Hum Neurosci ; 15: 668442, 2021.
Article in English | MEDLINE | ID: mdl-34025379

ABSTRACT

The activity of the left and right central pattern generators (CPGs) is efficiently coordinated during locomotion. To achieve this coordination, the interplay between the CPG controlling one leg and that controlling another must be present. Previous findings in aquatic vertebrates and mammalians suggest that the alternate activation of the left and right CPGs is mediated by the commissural interneurons crossing the midline of the spinal cord. Especially, V0 commissural interneurons mediate crossed inhibition during the alternative activity of the left and right CPGs. Even in humans, phase-dependent modulation of the crossed afferent inhibition during gait has been reported. Based on those previous findings, crossed inhibition of the CPG in one leg side caused by the activation of the contralateral CPG is a possible mechanism underlying the coordination of the anti-phase rhythmic movement of the legs. It has been hypothesized that the activity of the flexor half center in the CPG inhibits the contralateral flexor half center, but crossed inhibition of the extensor half center is not present because of the existence of the double limb support during gait. Nevertheless, previous findings on the phase-dependent crossed inhibition during anti-phase bilateral movement of the legs are not in line with this hypothesis. For example, extensor activity caused crossed inhibition of the flexor half center during bilateral cycling of the legs. In another study, the ankle extensor was inhibited at the period switching from extension to flexion during anti-phase rhythmic movement of the ankles. In this review article, I provide a critical discussion about crossed inhibition mediating the coordination of the anti-phase bilateral rhythmic movement of the legs.

SELECTION OF CITATIONS
SEARCH DETAIL
...