Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35591328

ABSTRACT

Miscible blends composed of bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA), in which one of them has low molecular weight, were employed to study the surface segregation behavior during flow. The blend samples showed typical rheological behaviors, such as simple polymer melts without a long-time relaxation mechanism ascribed to phase separation, demonstrating that they were miscible. After injection molding, the amounts of a low molecular weight component on the blend surface were found to be larger than the actual blend ratio. Because the injection-molded products were transparent despite a huge difference in refractive indices between PC and PMMA, they showed no phase separation. This result demonstrated that surface segregation of a low molecular weight component occurred under flow field, which expands the material design such as tough plastics with good scratch resistance and optical fibers with tapered refractive index.

2.
Materials (Basel) ; 15(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35454475

ABSTRACT

The effects of pressure and shear rate on the miscibility of binary blends comprising bisphenol-A polycarbonate (PC) and low molecular weight poly(methyl methacrylate) (PMMA) were investigated using a capillary rheometer. Both pressure and shear rate affected the miscibility. The examination of an extruded strand of the blend provided information about the cause of the phase change. Under high pressure, pressure-induced demixing occurred at temperatures below the lower critical solution temperature (LCST) of the blend. Consequently, the extruded strand became opaque throughout. During shear-induced mixing/demixing, a part of the strand became opaque because of the distribution of the shear rate in the strand. For example, during shear-induced demixing, only the exterior of the strand, i.e., the high shear rate region, became opaque. Above the LCST, shear-induced mixing occurred, and only the center region of the strand became opaque.

3.
Bioorg Med Chem ; 20(15): 4668-74, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22789704

ABSTRACT

The (19)F NMR probes for the HNO detection are reported. We synthesized the probe molecules with the paramagnetic Cu(II) complex and fluorine atoms using a cubic silsesquioxane. By using the magnetism changes of the Cu(II) to Cu(I) in the complex by the reduction with HNO, the (19)F NMR signal intensities of the probe increased. Noteworthily, our probes have superior resistance to reduced glutathione which is the major intracellular molecule to maintain the reductive environment and the competitor in the reduction of Cu(II) against HNO.


Subject(s)
Glutathione/chemistry , Nitrogen Oxides/analysis , Organometallic Compounds/chemistry , Copper/chemistry , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/chemical synthesis , Organosilicon Compounds/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...