Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 8004, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26258479

ABSTRACT

Na(+),K(+)-ATPase transfers three Na(+) from the cytoplasm into the extracellular medium and two K(+) in the opposite direction per ATP hydrolysed. The binding and release of Na(+) and K(+) are all thought to occur sequentially. Here we demonstrate by X-ray crystallography of the ATPase in E2·MgF4(2-)·2K(+), a state analogous to E2·Pi·2K(+), combined with isotopic measurements, that the substitution of the two K(+) with congeners in the extracellular medium indeed occurs at different rates, substantially faster at site II. An analysis of thermal movements of protein atoms in the crystal shows that the M3-M4E helix pair opens and closes the ion pathway leading to the extracellular medium, allowing K(+) at site II to be substituted first. Taken together, these results indicate that site I K(+) is the first cation to bind to the empty cation-binding sites after releasing three Na(+).


Subject(s)
Crystallography, X-Ray , Potassium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Potassium/chemistry , Protein Binding , Sharks , Sodium-Potassium-Exchanging ATPase/chemistry
2.
Nature ; 495(7440): 260-4, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23455422

ABSTRACT

P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes, and are distinct from other ATPases in that the reaction cycle includes an autophosphorylation step. The best studied is Ca(2+)-ATPase from muscle sarcoplasmic reticulum (SERCA1a), a Ca(2+) pump that relaxes muscle cells after contraction, and crystal structures have been determined for most of the reaction intermediates. An important outstanding structure is that of the E1 intermediate, which has empty high-affinity Ca(2+)-binding sites ready to accept new cytosolic Ca(2+). In the absence of Ca(2+) and at pH 7 or higher, the ATPase is predominantly in E1, not in E2 (low affinity for Ca(2+)), and if millimolar Mg(2+) is present, one Mg(2+) is expected to occupy one of the Ca(2+)-binding sites with a millimolar dissociation constant. This Mg(2+) accelerates the reaction cycle, not permitting phosphorylation without Ca(2+) binding. Here we describe the crystal structure of native SERCA1a (from rabbit) in this E1·Mg(2+) state at 3.0 Å resolution in addition to crystal structures of SERCA1a in E2 free from exogenous inhibitors, and address the structural basis of the activation signal for phosphoryl transfer. Unexpectedly, sarcolipin, a small regulatory membrane protein of Ca(2+)-ATPase, is bound, stabilizing the E1·Mg(2+) state. Sarcolipin is a close homologue of phospholamban, which is a critical mediator of ß-adrenergic signal in Ca(2+) regulation in heart (for reviews, see, for example, refs 8-10), and seems to play an important role in muscle-based thermogenesis. We also determined the crystal structure of recombinant SERCA1a devoid of sarcolipin, and describe the structural basis of inhibition by sarcolipin/phospholamban. Thus, the crystal structures reported here fill a gap in the structural elucidation of the reaction cycle and provide a solid basis for understanding the physiological regulation of the calcium pump.


Subject(s)
Magnesium/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Proteolipids/chemistry , Proteolipids/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Animals , Binding Sites/drug effects , Calcium-Binding Proteins/pharmacology , Cell Membrane/metabolism , Crystallography, X-Ray , Magnesium/chemistry , Magnesium/pharmacology , Models, Molecular , Muscle Proteins/pharmacology , Phosphorylation , Protein Binding , Protein Conformation/drug effects , Proteolipids/pharmacology , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors
3.
J Biol Chem ; 283(33): 22541-9, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18562314

ABSTRACT

Recombinant and purified Thermotoga maritima CopA sustains ATPase velocity of 1.78-2.73 micromol/mg/min in the presence of Cu+ (pH 6, 60 degrees C) and 0.03-0.08 micromol/mg/min in the absence of Cu+. High levels of enzyme phosphorylation are obtained by utilization of [gamma-32P]ATP in the absence of Cu+. This phosphoenzyme decays at a much slower rate than observed with Cu.E1 approximately P. In fact, the phosphoenzyme is reduced to much lower steady state levels upon addition of Cu+, due to rapid hydrolytic cleavage. Negligible ATPase turnover is sustained by CopA following deletion of its N-metal binding domain (DeltaNMBD) or mutation of NMBD cysteines (CXXC). Nevertheless, high levels of phosphoenzyme are obtained by utilization of [gamma-3)P]ATP by the DeltaNMBD and CXXC mutants, with no effect of Cu+ either on its formation or hydrolytic cleavage. Phosphoenzyme formation (E2P) can also be obtained by utilization of Pi, and this reaction is inhibited by Cu+ (E2 to E1 transition) even in the DeltaNMBD mutant, evidently due to Cu+ binding at a (transport) site other than the NMBD. E2P undergoes hydrolytic cleavage faster in DeltaNMBD and slower in CXXC mutant. We propose that Cu+ binding to the NMBD is required to produce an "active" conformation of CopA, whereby additional Cu+ bound to an alternate (transmembrane transport) site initiates faster cycles including formation of Cu.E1 approximately P, followed by the E1 approximately P to E2-P conformational transition and hydrolytic cleavage of phosphate. An H479Q mutation (analogous to one found in Wilson disease) renders CopA unable to utilize ATP, whereas phosphorylation by Pi is retained.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Thermotoga maritima/enzymology , Adenosine Triphosphatases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cation Transport Proteins/genetics , Copper/metabolism , Copper-Transporting ATPases , Kinetics , Lecithins/pharmacology , Phosphates/metabolism , Phosphoproteins/metabolism , Phosphorylation , Substrate Specificity
4.
Blood ; 111(3): 1167-72, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17986666

ABSTRACT

Junctional adhesion molecule-A (JAM-A/JAM-1/F11R) is a cell adhesion molecule expressed in epithelial and endothelial cells, and also hematopoietic cells, such as leukocytes, platelets, and erythrocytes. Here, we show that JAM-A is expressed at a high level in the enriched hematopoietic stem cell (HSC) fraction; that is, CD34(+)c-Kit(+) cells in embryonic day 11.5 (E11.5) aorta-gonod-mesonephros (AGM) and E11.5 fetal liver (FL), as well as c-Kit(+)Sca-1(+)Lineage(-) (KSL) cells in E14.5 FL, E18.5FL, and adult bone marrow (BM). Although the percentage of JAM-A(+) cells in those tissues decreases during development, the expression in the HSC fraction is maintained throughout life. Colony-forming assays reveal that multilineage colony-forming activity in JAM-A(+) cells is higher than that in JAM-A(-) cells in the enriched HSC fraction in all of those tissues. Transplantation assays show that long-term reconstituting HSC (LTR-HSC) activity is exclusively in the JAM-A(+) population and is highly enriched in the JAM-A(+) cells sorted directly from whole BM cells by anti-JAM-A antibody alone. Together, these results indicate that JAM-A is expressed on hematopoietic precursors in various hematopoietic tissues and is an excellent marker to isolate LTR-HSCs.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Membrane/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Receptors, Cell Surface/metabolism , Animals , Antigens, CD34/metabolism , Antigens, Ly/metabolism , Biomarkers , Cell Adhesion Molecules/genetics , Cell Lineage , Colony-Forming Units Assay , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Cell Surface/genetics , Time Factors
5.
J Biol Chem ; 283(2): 1189-96, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-17993458

ABSTRACT

Digestion with proteinase K or trypsin yields complementary information on conformational transitions of the Ca(2+)-ATPase (SERCA) in the native membrane environment. Distinct digestion patterns are obtained with proteinase K, revealing interconversion of E1 and E2 or E1 approximately P and E2-P states. The pH dependence of digestion patterns shows that, in the presence of Mg(2+), conversion of E2 to E1 pattern occurs (even when Ca(2+) is absent) as H(+) dissociates from acidic residues. Mutational analysis demonstrates that the Glu(309) and Glu(771) acidic residues (empty Ca(2+)-binding sites I and II) are required for stabilization of E2. Glu(309) ionization is most important to yield E1. However, a further transition produced by Ca(2+) binding to E1 (i.e. E1.2Ca(2+)) is still needed for catalytic activation. Following ATP utilization, H(+)/Ca(2+) exchange is involved in the transition from the E1 approximately P.2Ca(2+) to the E2-P pattern, whereby alkaline pH will limit this conformational transition. Complementary experiments on digestion with trypsin exhibit high temperature dependence, indicating that, in the E1 and E2 ground states, the ATPase conformation undergoes strong fluctuations related to internal protein dynamics. The fluctuations are tightly constrained by ATP binding and phosphoenzyme formation, and this constraint must be overcome by thermal activation and substrate-free energy to allow enzyme turnover. In fact, a substantial portion of ATP free energy is utilized for conformational work related to the E1 approximately P.2Ca(2+) to E2-P transition, thereby disrupting high affinity binding and allowing luminal diffusion of Ca(2+). The E2 state and luminal path closure follow removal of conformational constraint by phosphate.


Subject(s)
Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Membrane/enzymology , Crystallography, X-Ray , Endopeptidase K/pharmacology , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Muscle, Skeletal/enzymology , Protein Conformation , Rabbits , Substrate Specificity , Thermodynamics , Trypsin/pharmacology
6.
Mitochondrion ; 7(1-2): 125-32, 2007.
Article in English | MEDLINE | ID: mdl-17289446

ABSTRACT

The mitochondrion and the apicoplast of the malaria parasite, Plasmodium spp. is microscopically observed in a close proximity to each other. In this study, we tested the suitability of two different separation techniques--Percoll density gradient centrifugation and fluorescence-activated organelle sorting--for improving the purity of mitochondria isolated from the crude organelle preparation of Plasmodium falciparum. To our surprise, the apicoplast was inseparable from the plasmodial mitochondrion by each method. This implies these two plasmodial organelles are bound each other. This is the first experimental evidence of a physical binding between the two organelles in Plasmodium.


Subject(s)
Mitochondria/ultrastructure , Organelles/ultrastructure , Plasmodium falciparum/ultrastructure , Animals , Cell Fractionation , Centrifugation, Density Gradient , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL
...