Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Med Biol Eng Comput ; 61(3): 685-697, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585560

ABSTRACT

Endovascular robotic systems have been applied in robot-assisted interventional surgery to improve surgical safety and reduce radiation to surgeons. However, this surgery requires surgeons to be highly skilled at operating vascular interventional surgical robot. Virtual reality (VR) interventional training systems for robot-assisted interventional surgical training have many advantages over traditional training methods. For virtual interventional radiology, simulation of the behaviors of surgical tools (here mainly refers to catheter and guidewire) is a challenging work. In this paper, we developed a novel virtual reality interventional training system. This system is an extension of the endovascular robotic system. Because the master side of this system can be used for both the endovascular robotic system and the VR interventional training system, the proposed system improves training and reduces the cost of education. Moreover, we proposed a novel method to solve catheterization modeling during the interventional simulation. Our method discretizes the catheter by the collision points. The catheter between two adjacent collision points is treated as thin torsion-free elastic rods. The deformation of the rod is mainly affected by the force applied at the collision points. Meanwhile, the virtual contact force is determined by the collision points. This simplification makes the model more stable and reduces the computational complexity, and the behavior of the surgical tools can be approximated. Therefore, we realized the catheter interaction simulation and virtual force feedback for the proposed VR interventional training system. The performance of our method is experimentally validated.


Subject(s)
Robotic Surgical Procedures , Virtual Reality , Catheters , Catheterization , Computer Simulation , Robotic Surgical Procedures/methods
2.
IEEE J Biomed Health Inform ; 26(8): 4176-4186, 2022 08.
Article in English | MEDLINE | ID: mdl-35594225

ABSTRACT

As a promising alternative to hospital-based manual therapy, robot-assisted tele-rehabilitation therapy has shown significant benefits in reducing the therapist's workload and accelerating the patient's recovery process. However, existing telerobotic systems for rehabilitation face barriers to implementing appropriate therapy treatment due to the lack of effective therapist-patient interactive capabilities. In this paper, we develop a home-based tele-rehabilitation system that implements two alternative training methods, including a haptic-enabled guided training that allows the therapist to adjust the intensity of therapeutic movements provided by the rehabilitation device and a surface electromyography (sEMG)-based supervised training that explores remote assessment of the patient's kinesthetic awareness. Preliminary experiments were conducted to demonstrate the feasibility of the proposed alternative training methods and evaluate the functionality of the developed tele-rehabilitation system. Results showed that the proposed tele-rehabilitation system enabled therapist-in-the-loop to dynamically adjust the rehabilitation intensity and provided more interactivity in therapist-patient remote interaction.


Subject(s)
Robotics , Telerehabilitation , Electromyography , Feasibility Studies , Humans , Movement , Robotics/methods , Telerehabilitation/methods
3.
Life (Basel) ; 11(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34947820

ABSTRACT

In this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation system with surface electromyography (sEMG)-based patient active force assessment was proposed for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-based human-robot interface was designed to facilitate the bilateral isometric force output training task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric force estimation method was implemented into the proposed system for real-time affected side force assessment and participation evaluation. To assist the affected side limb efficiently and precisely, a mirror bilateral control framework was presented for bilateral limb coordination. Preliminary experiments were conducted to evaluate the estimation accuracy of force estimation method and force tracking accuracy of system performance. The experimental results show the proposed force estimation method can efficiently calculate the elbow joint force in real-time, and the affected side limb of patients can be assisted to track output force of the non-paretic side limb for better limb coordination by the proposed bilateral rehabilitation system.

4.
IEEE J Biomed Health Inform ; 25(5): 1529-1541, 2021 05.
Article in English | MEDLINE | ID: mdl-32991291

ABSTRACT

Bilateral rehabilitation allows patients with hemiparesis to exploit the cooperative capabilities of both arms to promote the recovery process. Although various approaches have been proposed to facilitate synchronized robot-assisted bilateral movements, few studies have focused on addressing the varying joint stiffness resulting from dynamic motions. This paper presents a novel bilateral rehabilitation system that implements a surface electromyography (sEMG)-based stiffness control to achieve real-time stiffness adjustment based on the user's dynamic motion. An sEMG-driven musculoskeletal model that incorporates the muscle activation and muscular contraction dynamics is developed to provide reference signals for the robot's real-time stiffness control. Preliminary experiments were conducted to evaluate the system performance in tracking accuracy and comfortability, which showed the proposed rehabilitation system with sEMG-based real-time stiffness variation achieved fast adaption to the patient's dynamic movement as well as improving the comfort in robot-assisted bilateral training.


Subject(s)
Arm , Electromyography , Movement , Home Care Services , Humans , Monitoring, Physiologic , Muscle Contraction
5.
Biomed Microdevices ; 20(3): 64, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30074095

ABSTRACT

Robot-assisted movement training by means of exoskeleton devices has been proven to be an effective method for post-stroke patients to recover their motor function. However, in order to be used in home-based rehabilitation, the kinematic structure of a wearable exoskeleton device should provide portability and make allowances for the natural joint range of motion for the user. Additionally, the actuated stiffness of the target joint is desired to be adjustable in accordance with the specific impairment level of the patient's upper limb. In this paper, we present a novel portable exoskeleton device which could provide support for rehabilitation patients with variable actuated stiffness in the elbow joint. It has five passive degrees of freedom to guarantee the user's natural joint range of motion and intra-subject variability, as well as an integrated variable stiffness actuator (VSA) which can adjust the joint stiffness independently by moving the pivot position. An elbow power-assist trial with different actuated joint stiffnesses was tested on a healthy subject to evaluate the functionality of the proposed device. By regulating the joint stiffness, the proposed device could provide variable power assistance for the wearer's elbow movements.


Subject(s)
Elbow/physiology , Exoskeleton Device , Stroke Rehabilitation/instrumentation , Adult , Biomechanical Phenomena , Computer Simulation , Elbow Joint/physiology , Equipment Design , Humans , Male , Models, Theoretical , Movement , Range of Motion, Articular , Robotics/instrumentation
6.
Biomed Microdevices ; 20(2): 50, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29926195

ABSTRACT

In this paper, a novel robot-assisted catheter operating system (RCOS) has been proposed as a method to reduce physical stress and X-ray exposure time to physicians during endovascular procedures. The unique design of this system allows the physician to apply conventional bedside catheterization skills (advance, retreat and rotate) to an input catheter, which is placed at the master side to control another patient catheter placed at the slave side. For this purpose, a magnetorheological (MR) fluids-based master haptic interface has been developed to measure the axial and radial motions of an input catheter, as well as to provide the haptic feedback to the physician during the operation. In order to achieve a quick response of the haptic force in the master haptic interface, a hall sensor-based closed-loop control strategy is employed. In slave side, a catheter manipulator is presented to deliver the patient catheter, according to position commands received from the master haptic interface. The contact forces between the patient catheter and blood vessel system can be measured by designed force sensor unit of catheter manipulator. Four levels of haptic force are provided to make the operator aware of the resistance encountered by the patient catheter during the insertion procedure. The catheter manipulator was evaluated for precision positioning. The time lag from the sensed motion to replicated motion is tested. To verify the efficacy of the proposed haptic feedback method, the evaluation experiments in vitro are carried out. The results demonstrate that the proposed system has the ability to enable decreasing the contact forces between the catheter and vasculature.


Subject(s)
Catheters , Feedback, Sensory , Robotic Surgical Procedures/instrumentation , Mechanical Phenomena
7.
Biomed Microdevices ; 20(2): 22, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476379

ABSTRACT

The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.


Subject(s)
Catheters , Equipment Design/methods , Robotic Surgical Procedures/methods , Safety
8.
Int J Med Robot ; 13(3)2017 Sep.
Article in English | MEDLINE | ID: mdl-27538939

ABSTRACT

BACKGROUND: Endovascular surgery benefits patients because of its superior short convalescence and lack of damage to healthy tissue. However, such advantages require the operator to be equipped with dexterous skills for catheter manipulation without resulting in collateral damage. To achieve this goal, a training system is in high demand. METHODS: A training system integrating a VR simulator and a haptic device has been developed within this context. The VR simulator is capable of providing visual cues which assist the novice for safe catheterization. In addition, the haptic device cooperates with VR simulator to apply sensations at the same time. The training system was tested by non-medical subjects over a five days training session. RESULTS: The performance was evaluated in terms of safety criteria and task completion time. The results demonstrate that operation safety is improved by 15.94% and task completion time is cut by 18.80 s maximum. Moreover, according to subjects' reflections, they are more confident in operation. CONCLUSIONS: The proposed training system constructs a comprehensive training environment that combines visualization and force sensation. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Catheterization/instrumentation , Endovascular Procedures/education , Endovascular Procedures/instrumentation , Surgery, Computer-Assisted/education , Surgery, Computer-Assisted/instrumentation , Virtual Reality , Algorithms , Biomechanical Phenomena , Computer Simulation , Computer-Assisted Instruction/instrumentation , Equipment Design , Humans
9.
Int J Comput Assist Radiol Surg ; 11(1): 119-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26067289

ABSTRACT

PURPOSE: It is difficult to manipulate a flexible catheter to target a position within a patient's complicated and delicate vessels. However, few researchers focused on the controller designs with much consideration of the natural catheter manipulation skills obtained from manual catheterization. Also, the existing catheter motion measurement methods probably lead to the difficulties in designing the force feedback device. Additionally, the commercially available systems are too expensive which makes them cost prohibitive to most hospitals. This paper presents a simple and cost-effective master controller for endovascular catheterization that can allow the interventionalists to apply the conventional pull, push and twist of the catheter used in current practice. METHODS: A catheter-sensing unit (used to measure the motion of the catheter) and a force feedback unit (used to provide a sense of resistance force) are both presented. A camera was used to allow a contactless measurement avoiding additional friction, and the force feedback in the axial direction was provided by the magnetic force generated between the permanent magnets and the powered coil. RESULTS: Performance evaluation of the controller was evaluated by first conducting comparison experiments to quantify the accuracy of the catheter-sensing unit, and then conducting several experiments to evaluate the force feedback unit. From the experimental results, the minimum and the maximum errors of translational displacement were 0.003 mm (0.01 %) and 0.425 mm (1.06 %), respectively. The average error was 0.113 mm (0.28 %). In terms of rotational angles, the minimum and the maximum errors were 0.39°(0.33 %) and 7.2°(6 %), respectively. The average error was 3.61°(3.01 %). The force resolution was approximately 25 mN and a maximum current of 3A generated an approximately 1.5 N force. CONCLUSION: Based on analysis of requirements and state-of-the-art computer-assisted and robot-assisted training systems for endovascular catheterization, a new master controller with force feedback interface was proposed to maintain the natural endovascular catheterization skills of the interventionalists.


Subject(s)
Catheterization/instrumentation , Endovascular Procedures/instrumentation , Robotics/instrumentation , Surgery, Computer-Assisted/instrumentation , Equipment Design , Humans , Surgery, Computer-Assisted/methods
10.
Int J Med Robot ; 12(1): 32-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25693866

ABSTRACT

BACKGROUND: An Internet-based tele-operative robotic catheter operating system was designed for vascular interventional surgery, to afford unskilled surgeons the opportunity to learn basic catheter/guidewire skills, while allowing experienced physicians to perform surgeries cooperatively. Remote surgical procedures, limited by variable transmission times for visual feedback, have been associated with deterioration in operability and vascular wall damage during surgery. METHODS: At the patient's location, the catheter shape/position was detected in real time and converted into three-dimensional coordinates in a world coordinate system. At the operation location, the catheter shape was reconstructed in a virtual-reality environment, based on the coordinates received. The data volume reduction significantly reduced visual feedback transmission times. RESULTS: Remote transmission experiments, conducted over inter-country distances, demonstrated the improved performance of the proposed prototype. The maximum error for the catheter shape reconstruction was 0.93 mm and the transmission time was reduced considerably. CONCLUSIONS: The results were positive and demonstrate the feasibility of remote surgery using conventional network infrastructures.


Subject(s)
Catheterization/methods , Feedback, Sensory/physiology , Robotic Surgical Procedures/methods , Telemedicine/methods , Catheters , Humans , Time Factors
11.
J Med Biol Eng ; 35(2): 165-177, 2015.
Article in English | MEDLINE | ID: mdl-25960705

ABSTRACT

This paper presents a quantitative representation method for the upper-limb elbow joint angle using only electromyography (EMG) signals for continuous elbow joint voluntary flexion and extension in the sagittal plane. The dynamics relation between the musculotendon force exerted by the biceps brachii muscle and the elbow joint angle is developed for a modified musculoskeletal model. Based on the dynamics model, a quadratic-like quantitative relationship between EMG signals and the elbow joint angle is built using a Hill-type-based muscular model. Furthermore, a state switching model is designed to stabilize the transition of EMG signals between different muscle contraction motions during the whole movement. To evaluate the efficiency of the method, ten subjects performed continuous experiments during a 4-day period and five of them performed a subsequent consecutive stepping test. The results were calculated in real-time and used as control reference to drive an exoskeleton device bilaterally. The experimental results indicate that the proposed method can provide suitable prediction results with root-mean-square (RMS) errors of below 10° in continuous motion and RMS errors of below 10° in stepping motion with 20° and 30° increments. It is also easier to calibrate and implement.

12.
Sensors (Basel) ; 15(5): 11511-27, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25996511

ABSTRACT

Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist-patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist's motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients' safety is guaranteed by monitoring the motor's current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients' safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication.


Subject(s)
Biomechanical Phenomena/physiology , Robotics/instrumentation , Stroke Rehabilitation , Telemedicine/instrumentation , Adult , Equipment Design , Humans , Male
13.
Sensors (Basel) ; 15(4): 9022-38, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25894941

ABSTRACT

The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement.


Subject(s)
Electromyography/methods , Support Vector Machine
14.
Biomed Microdevices ; 17(2): 31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25681973

ABSTRACT

Magnetically actuated microrobots for such tools have potential accomplish procedures in biological and medical applications. In this paper, a novel magnetically actuated hybrid microrobot with hybrid motion driven by an electromagnetic actuation system has been proposed. An o-ring type permanent magnet is embedded in the hybrid microrobot as an actuator driven by rotational magnetic field which is generated by a 3 axes Helmholtz coils. It is composed by two motion mechanisms. One is the spiral jet motion moved by rotating its body. The other one is fin motion moved by vibrating its body. Because only one permanent magnet is used inside the hybrid microrobot, two motions can be controlled separately without any interference. The hybrid microrobot can change its two motions to realize multi-DOFs movement and flexibility motion. The verified experiments are conducted in the pipe. The experimental results indicate that the moving speed can be controlled by adjusting the magnetic field changing frequency and the direction of motion can be controlled by changing the magnetic field direction.


Subject(s)
Robotics/instrumentation , Robotics/methods , Electromagnetic Phenomena , Equipment Design , Lasers , Magnetic Fields , Miniaturization , Motion , Polyethylene Terephthalates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...