Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Probl Perform Art ; 34(4): 191-197, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31800670

ABSTRACT

Around 1741, composer Johann Sebastian Bach published a long and complicated keyboard piece, calling it Aria with diverse variations for a harpsichord with two manuals. It was the capstone of a publication project called German Clavier-Übung (Keyboard Practice) where Bach wanted to show what was possible at the keyboard in terms of technical development, virtuosic finesse and compositional sophistication. The music is meticulously patterned, beginning with a highly ornamented Aria, the bass line of which fuels the 30 variations that follow. The piece is clearly divided into two parts with the second half beginning with an overture with a fanfare opening, in variation 16. The piece ends as it begins, with the return of the Aria. Here, we present an investigation into activation and connectivity in the brain of a pianist, who listened to her own recording of the "Goldberg" variation while undergoing a fMRI examination. Similarity of brain connectivity is quantified and compared with the subjective scores provided by the subject.


Subject(s)
Brain , Music , Auditory Perception , Brain/physiology , Humans , Magnetic Resonance Imaging , Pilot Projects
2.
PLoS One ; 11(7): e0160210, 2016.
Article in English | MEDLINE | ID: mdl-27467595

ABSTRACT

During natural parasitization, Asobara japonica wasps introduce lateral oviduct (LO) components into their Drosophila hosts soon after the venom injection to neutralize its strong toxicity; otherwise, the host will die. Although the orchestrated relationship between the venom and LO components necessary for successful parasitism has attracted the attention of many researchers in this field, the molecular natures of both factors remain ambiguous. We here showed that precipitation of the venom components by ultracentrifugation yielded a toxic fraction that was inactivated by ultraviolet light irradiation, boiling, and sonication, suggesting that it is a virus-like entity. Morphological observation of the precipitate after ultracentrifugation showed small spherical heterogeneous virus-like particles 20-40 nm in diameter. The venom's detrimental effect on D. melanogaster larvae was not directly neutralized by the LO components but blocked by a hemolymphal neutralizing factor activated by the LO factor. Furthermore, we found that A. japonica venom and LO components acted similarly on the larvae of the common cutworm Spodoptera litura: the venom injection caused mortality but coinjection of the LO factor protected S. litura larvae from the venom's toxicity. In contrast, D. ficusphila and D. bipectinata, which are closely related to D. melanogaster but non-habitual host species of A. japonica, were not negatively affected by A. japonica venom due to an intrinsic neutralizing activity in their hemolymph, indicating that these species must have acquired a neutralizer of A. japonica venom during evolution. These results give new insights into the characteristics of both the venom and LO components: A. japonica females have utilized the virus-like toxic venom factor to exploit a wider range of host species after the evolutionary process enabled them to use the LO factor for activation of the host hemolymph neutralizer precursor, although the non-habitual host Drosophila species possess an active intrinsic neutralizer in their hemolymph.


Subject(s)
Drosophila melanogaster/parasitology , Host-Parasite Interactions/physiology , Oviducts/physiology , Wasp Venoms/metabolism , Wasps/physiology , Animals , Female , Oviducts/metabolism , Spodoptera/parasitology , Survival Rate , Wasp Venoms/chemistry
3.
Cell Signal ; 28(5): 425-437, 2016 May.
Article in English | MEDLINE | ID: mdl-26721188

ABSTRACT

The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-2 in vitro was inhibited or promoted as a result of the phosphorylation at Thr(138) by PKA or at Ser(187) by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K(+) concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K(+)-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K(+), and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K(+), but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Exocytosis , Protein Kinase C/metabolism , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Amino Acids/metabolism , Animals , Norepinephrine/metabolism , PC12 Cells , Phosphorylation , Rats , Synaptosomal-Associated Protein 25/chemistry , Syntaxin 1/metabolism
4.
PLoS One ; 10(10): e0140914, 2015.
Article in English | MEDLINE | ID: mdl-26492411

ABSTRACT

Wolbachia is the most widespread endosymbiotic bacterium that manipulates reproduction of its arthropod hosts to enhance its own spread throughout host populations. Infection with Wolbachia causes complete parthenogenetic reproduction in many Hymenoptera, producing only female offspring. The mechanism of such reproductive manipulation by Wolbachia has been extensively studied. However, the effects of Wolbachia symbiosis on behavioral traits of the hosts are scarcely investigated. The parasitoid wasp Asobara japonica is an ideal insect to investigate this because symbiotic and aposymbiotic strains are available: Wolbachia-infected Tokyo (TK) and noninfected Iriomote (IR) strains originally collected on the main island and southwest islands of Japan, respectively. We compared the oviposition behaviors of the two strains and found that TK strain females parasitized Drosophila melanogaster larvae more actively than the IR strain, especially during the first two days after eclosion. Removing Wolbachia from the TK strain wasps by treatment with tetracycline or rifampicin decreased their parasitism activity to the level of the IR strain. Morphological and behavioral analyses of both strain wasps showed that Wolbachia endosymbionts do not affect development of the host female reproductive tract and eggs, but do enhance host-searching ability of female wasps. These results suggest the possibility that Wolbachia endosymbionts may promote their diffusion and persistence in the host A. japonica population not only at least partly by parthenogenesis but also by enhancement of oviposition frequency of the host females.


Subject(s)
Wasps/microbiology , Wolbachia/physiology , Animals , Drosophila melanogaster/parasitology , Female , Host-Pathogen Interactions/physiology , Male , Oviposition/physiology , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...