Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 317: 115478, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35751275

ABSTRACT

Forest ecosystems play an indispensable role in addressing various pressing sustainability and social-ecological challenges such as climate change, biodiversity loss, and ecosystem services deterioration, hence the monitoring of the world's forests is crucial. As part of the global forest assessment workflow, a forest is generally classified and mapped based on land use and/or using a tree canopy cover threshold. In this paper, we examine the limitations of this approach and argue that the use of a land use-based forest definition and tree canopy cover thresholds can overlook forest degradation and enhancement, disguise the actual status of forest landscapes, and misinform management planning. These limitations can delay the development and implementation of forest restoration and conservation measures. To help overcome these issues, we propose some enhancements to the global forest assessment workflow, including the sharing of spatial data and inclusion of tree canopy cover estimates in assessment reports. Such enhancements are needed to achieve more meaningful forest monitoring and reporting in the context of global environmental initiatives, such as those related to climate change mitigation and adaptation, forest restoration, biodiversity conservation, and ecosystem services monitoring.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forests , Trees
2.
Carbon Balance Manag ; 6(1): 13, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-22115360

ABSTRACT

Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates.

SELECTION OF CITATIONS
SEARCH DETAIL
...