Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(13): 19772-19782, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672247

ABSTRACT

We demonstrate low-loss and broadband light transition from III-V functional layers to a Si platform via two-stage adiabatic-crossing coupler waveguides. A 900-µm-long and 2.7-µm-thick III-V film waveguide consisting of a GaInAsP core and InP cladding layers is transferred onto an air-cladding Si photonic chip by the µ-transfer printing (µ-TP) method. An average optical coupling loss per joint of 1.26 dB is obtained in C + L telecommunication bands (1530-1635 nm). The correlation between alignment offset and measured optical coupling loss is discussed with the frequency distribution of µ-TP samples. We also performed a photoluminescence measurement to investigate the material properties in the GaInAsP layer to see if they are distorted by the strong bending stress produced during the pick-up and print steps of the µ-TP process. The peak intensity reduction of 80-90% and a wavelength shift of 0-5 nm (blue shift) were observed after the process. The series of fundamental studies presented here, which combine multiple analyses, contribute to improving our understanding of III-V/Si photonic integration by µ-TP.

2.
Opt Express ; 25(16): 18537-18552, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041053

ABSTRACT

We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

3.
Opt Express ; 24(16): 18571-9, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27505820

ABSTRACT

Low-power consumption directly-modulated lasers are a key device for on-chip optical interconnection. We fabricated a GaInAsP/InP membrane DFB laser that exhibited a low-threshold current of 0.21 mA and single-mode operation with a sub-mode suppression ratio of 47 dB at a bias current of 2 mA. A high modulation efficiency of 11 GHz/mA1/2 was obtained. A 10 Gbit/s direct modulation using a non-return-to-zero 231-1 pseudo-random bit sequence signal was performed with a bias current of 1 mA, which is the lowest bias current ever reported for direct modulation of a DFB laser. A bit-error rate of 10-9 was successfully achieved.

4.
Opt Express ; 23(22): 29024-31, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561171

ABSTRACT

The direct modulation characteristics of a membrane distributed feedback (DFB) laser on a silicon substrate were investigated. Enhancement of the optical confinement factor in the membrane structure facilitates the fabrication of a strongly index-coupled (κ(I) = 1500 cm(-1)) DFB laser with the cavity length of 80 µm and a threshold current of 270 µA. Small-signal modulation measurements yielded a -3dB bandwidth of 9.5 GHz at 1.03-mA bias current, with modulation efficiency of 9.9 GHz/mA(1/2), which is, to the best of our knowledge, the highest value among those reported for DFB lasers.

5.
Opt Express ; 23(17): 22394-403, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368209

ABSTRACT

Photonic wire bonding (PWB) was used to achieve flexible chip-scale optical interconnection as a kind of 3D-freeform polymer waveguide based on the two-photon polymerization of SU-8. First, the fabrication conditions of PWB were determined for the two-photon absorption process, and the coupling structure between PWB and III-V optical components was numerically simulated in order to obtain high coupling efficiency. Then, using PWB, chip-to-chip optical transmission was realized between laser and detector chips located on a common Si substrate. We fabricated a 2.5-µm-wide PWB with 1:3 aspect ratio between two optical chips of 140-µm gap and achieved a connection loss of approximately 10 dB.

6.
Opt Express ; 23(6): 7771-8, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837115

ABSTRACT

We fabricated GaInAsP/InP waveguide-integrated lateral-current-injection (LCI) membrane distributed feedback (DFB) lasers on a Si substrate by using benzocyclobutene (BCB) adhesive bonding for on-chip optical interconnection. The integration ofa butt-jointed built-in (BJB) GaInAsP passive waveguide was performed by organometallic vapor-phase epitaxy (OMVPE).By introducing a strongly index-coupled DFB structure with a 50-µm-long cavity, a threshold current of 230 µA was achieved for a stripe width of 0.8 µm under room-temperature continuous-wave (RT-CW) conditions. The maximum output power of 32 µW was obtained. The lasing wavelength and submode suppression ratio (SMSR) were 1534 nm and 28 dB, respectively, at a bias current of 1.2 mA.

SELECTION OF CITATIONS
SEARCH DETAIL
...