Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 4: 1649, 2013.
Article in English | MEDLINE | ID: mdl-23552064

ABSTRACT

Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy.

2.
Nat Commun ; 2: 558, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127054

ABSTRACT

Graphitic systems have an electronic structure that can be readily manipulated through electrostatic or chemical doping, resulting in a rich variety of electronic ground states. Here we report the first observation and characterization of electronic stripes in the highly electron-doped graphitic superconductor, CaC(6), by scanning tunnelling microscopy and spectroscopy. The stripes correspond to a charge density wave with a period three times that of the Ca superlattice. Although the positions of the Ca intercalants are modulated, no displacements of the carbon lattice are detected, indicating that the graphene sheets host the ideal charge density wave. This provides an exceptionally simple material-graphene-as a starting point for understanding the relation between stripes and superconductivity. Furthermore, our experiments suggest a strategy to search for superconductivity in graphene, namely in the vicinity of striped 'Wigner crystal' phases, where some of the electrons crystallize to form a superlattice.


Subject(s)
Carbon/chemistry , Graphite/chemistry , Electric Conductivity , Microscopy, Scanning Tunneling , Nanostructures/chemistry , Nanotechnology
3.
Phys Rev Lett ; 103(10): 107203, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19792339

ABSTRACT

Screening the electron spin of a magnetic atom via spin coupling to conduction electrons results in a strong resonant peak in the density of states at the Fermi energy, the Kondo resonance. We show that magnetic coupling of a Kondo atom to another unscreened magnetic atom can split the Kondo resonance into two peaks. Inelastic spin excitation spectroscopy with scanning tunneling microscopy is used to probe the Kondo effect of a Co atom, supported on a thin insulating layer on a Cu substrate, that is weakly coupled to a nearby Fe atom to form an inhomogeneous dimer. The Kondo peak is split by interaction with the non-Kondo atom, but can be reconstituted with a magnetic field of suitable magnitude and direction. Quantitative modeling shows that this magnetic field results in a spin-level degeneracy in the dimer, which enables the Kondo effect to occur.

4.
Phys Rev Lett ; 97(3): 036804, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16907529

ABSTRACT

Spin excitations from a partially populated composite fermion level are studied above and below nu=1/3. In the range 2/7

5.
Phys Rev Lett ; 95(6): 066803, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090973

ABSTRACT

Resonant inelastic light scattering experiments at nu = 1/3 reveal a novel splitting of the long-wavelength modes in the low energy spectrum of quasi-particle excitations in the charge degree of freedom. We find a single peak at small wave vectors that splits into two distinct modes at larger wave vectors. The evidence of well-defined dispersive behavior at small wave vectors indicates a coherence of the quantum fluid in the micron length scale. We evaluate interpretations of long-wavelength modes of the electron liquid.

6.
Phys Rev Lett ; 91(18): 186802, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-14611304

ABSTRACT

New low-lying excitations are observed by inelastic light scattering at filling factors nu=p/(phip+/-1) of the fractional quantum Hall regime with phi=4. Coexisting with these modes throughout the range nu < or =1/3 are phi=2 excitations seen at 1/3. Both phi=2 and phi=4 excitations have distinct behaviors with temperature and filling factor. The abrupt first appearance of the new modes in the low-energy excitation spectrum at nu > or near 1/3 suggests a marked change in the quantum ground state on crossing the phi=2-->phi=4 boundary at nu=1/3.

SELECTION OF CITATIONS
SEARCH DETAIL
...