Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639600

ABSTRACT

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Subject(s)
Oryza , Oryza/genetics , Cytokinins/genetics , Purine Nucleosides , N-Glycosyl Hydrolases/genetics , Nucleosides , Cell Wall/genetics
2.
Plant Biotechnol (Tokyo) ; 40(1): 9-13, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-38213919

ABSTRACT

In plants, mitogen activated protein kinases (MPKs) are involved in various signaling pathways that lead to biotic and abiotic responses as well as that regulate developmental processes. Among them, MPK6 and its closely related homologue, MPK3, act redundantly and are known to be involved in asymmetric cell divisions of meristemoid mother cells in stomata development and of zygotes in Arabidopsis. Loss-of-function mutants of GLE4/OsMPK6, which is an orthologue of MPK6 in rice, showed a defect in polarity establishment in early stage of embryogenesis. However, because of the embryo lethality of the mutations, the function of GLE4/OsMPK6 in post-embryonic development is not clarified. Here, we report the analysis of post embryonic function of GLE4/OsMPK6 in vegetative stage of rice using regenerated gle4/osmpk6 homozygous plants from tissue culture. The regenerated plants are dwarf and produce multiple shoots with small leaves. These shoots never develop into reproductive stage, instead, proliferate vegetative shoots repeatedly. Leaves of gle4/osmpk6 have small leaf blade at the tip and blade-sheath boundary become obscure. Stomata arrangement is also disturbed in gle4/osmpk6 leaf blade. The shape of shoot apical meristem of gle4/osmpk6 become disorganized. Thus, GLE4/OsMPK6 functions in shoot organization and stomata patterning in the post embryonic development in rice.

3.
Plant J ; 111(5): 1397-1410, 2022 09.
Article in English | MEDLINE | ID: mdl-35792830

ABSTRACT

Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.


Subject(s)
Lotus , Retroelements , Evolution, Molecular , Genome, Plant/genetics , Hybridization, Genetic , Lotus/genetics , Plants/genetics , Retroelements/genetics , Terminal Repeat Sequences/genetics
4.
Funct Plant Biol ; 46(8): 777-785, 2019 07.
Article in English | MEDLINE | ID: mdl-31043226

ABSTRACT

OsINV2, a rice vacuolar invertase isoform, was assessed for its functional roles in plant growth and development with key focus on its agronomic traits such as grain weight, grain filling percentage, grain number and dry weights at various stages until harvest. Lack of differences between the wild-type and the mutants with respect to any of the aforementioned traits tested revealed a possibility of functional compensation of OsINV2 in the mutants conceivably by its isoform. This was confirmed by OsINV2 promoter::GUS studies, where its spatial and temporal expression in the panicle elongation stages showed that although OsINV2 expression was observed from the stage with young panicles ~1 cm in length to the flag leaf stage, significant differences with respect to panicle and spikelet phenotypes between the wild-type and the mutant were not present. However, complement lines displaying an overexpression phenotype of OsINV2 possessed a higher stem non-structural carbohydrate content under both monoculm and normal tillering conditions. A trade-off between the spikelet number and grain weight in the complement lines grown under monoculm conditions was also observed, pointing towards the necessity of OsINV2 regulation for grain yield-related traits.


Subject(s)
Oryza , Edible Grain , Phenotype , Protein Isoforms , beta-Fructofuranosidase
5.
Development ; 146(13)2019 06 21.
Article in English | MEDLINE | ID: mdl-31118231

ABSTRACT

Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.


Subject(s)
Asymmetric Cell Division/genetics , Mitogen-Activated Protein Kinase 6/physiology , Oryza , Zygote/cytology , Cell Division/genetics , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase 6/genetics , Oryza/embryology , Oryza/enzymology , Oryza/genetics , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism
6.
Sci Rep ; 9(1): 587, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679785

ABSTRACT

The fungal pathogen Rhizoctonia solani causes devastating diseases in hundreds of plant species. Among these, R. solani causes sheath blight, one of the three major diseases in rice. To date, few genes have been reported that confer resistance to R. solani. Here, rice-FOX Arabidopsis lines identified as having resistance to a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and a fungal pathogen, Colletotrichum higginsianum were screened for disease resistance to R. solani. BROAD-SPECTRUM RESISTANCE2 (BSR2), a gene encoding an uncharacterized cytochrome P450 protein belonging to the CYP78A family, conferred resistance to R. solani in Arabidopsis. When overexpressed in rice, BSR2 also conferred resistance to two R. solani anastomosis groups. Both Arabidopsis and rice plants overexpressing BSR2 had slower growth and produced longer seeds than wild-type control plants. In contrast, BSR2-knockdown rice plants were more susceptible to R. solani and displayed faster growth and shorter seeds in comparison with the control. These results indicate that BSR2 is associated with disease resistance, growth rate and seed size in rice and suggest that its function is evolutionarily conserved in both monocot rice and dicot Arabidopsis.


Subject(s)
Arabidopsis/growth & development , Cytochrome P-450 Enzyme System/metabolism , Disease Resistance , Oryza/growth & development , Plant Diseases/immunology , Rhizoctonia/growth & development , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis/microbiology , Cytochrome P-450 Enzyme System/genetics , Gene Expression , Oryza/anatomy & histology , Oryza/genetics , Oryza/microbiology , Plant Diseases/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Plant Cell Physiol ; 59(5): 903-915, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29562362

ABSTRACT

Phenylpropanoids, including diverse compounds, such as monolignols and hydroxycinnamic acids (HCAAs), are essential for land plants to protect them against abiotic stresses, and create physical and chemical barriers to pathogen infection. However, the control of production of these compounds in response to pathogens has been poorly understood. Previously we showed that a MAMP- (microbe-associated molecular pattern) responsive MAPK (mitogen-activated protein kinase) cascade (MKK4-MPK3/MPK6) comprehensively induced the expression of cinnamate/monolignol synthesis genes in rice cells. Here, we identified three MYB proteins, MYB30, MYB55 and MYB110, which are transcriptionally induced by MAMP treatment, MAPK activation and pathogen inoculation. Induced expression of these MYB genes systematically and specifically induced a large part of the genes encoding enzymes in the cinnamate/monolignol pathway. Furthermore, induced expression of the MYB genes caused accumulation of ferulic acid, one of the HCAAs, and enhanced resistance to both fungal and bacterial pathogens in planta. In conclusion, MYB30, MYB55 and MYB110 are involved in the signal pathway between MAMP perception and cinnamate/monolignol synthesis, and have important roles for plant immunity.


Subject(s)
Biosynthetic Pathways , Coumaric Acids/metabolism , Oryza/immunology , Oryza/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity , Plant Proteins/metabolism , Transcription Factors/metabolism , Base Sequence , Conserved Sequence , Disease Resistance/immunology , Gene Expression Regulation, Plant , Genes, Plant , Lignin/metabolism , Nucleotide Motifs/genetics , Oryza/genetics , Oryza/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Shikimic Acid/metabolism , Transcriptional Activation/genetics
8.
Rice (N Y) ; 11(1): 6, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29344835

ABSTRACT

BACKGROUND: Rice is a major crop feeding the majority of the global population, and increasing its sink strength is one of the modes to alleviate the declining availability of food for the rapidly growing world population. We demonstrate a role for an important rice vacuolar invertase isoform, OsINV3, in sink strength determination. RESULTS: OsINV3 mutants showed shorter panicles with lighter and smaller grains, owing to a smaller cell size on the outer and inner surfaces of the palea and lemma as observed by scanning electron microscopy. Further, strong promoter::GUS expression was observed in the palea, lemma and the rachis branches in the young elongating panicles, which supported the role of OsINV3 in cell expansion and thus, in spikelet size and panicle length determination. Size of the spikelet was found to directly influence the grain weight, which was confirmed by the lack of differences in weights of hulled grain for differently segregated alleles in the heterozygous lines. Assessment of field grown mutants not only revealed a drastic reduction in the percentage of ripened grain, 1000-grain weight and final yield, but also significantly reduced partitioning of assimilates to the panicles, whereby the total dry weight remained unaffected. Determination of the non-structural carbohydrate contents revealed a lower hexose-to-sucrose ratio in the panicles of the mutants from panicle initiation to 10 days after heading, a stage that identifies as the critical pre-storage phase of grain filling, whereas the starch contents were not affected. In addition, strong promoter::GUS expression was observed in the dorsal end of ovary during the pre-storage phase until 6 days after flowering, highlighting a function for OsINV3 in monitoring the initial grain filling stage. CONCLUSIONS: OsINV3 was found to regulate spikelet size by playing a key role in cell expansion, driving the movement of assimilates for grain filling by modulating the hexose-to-sucrose ratio, contributing in grain weight determination and thus, the grain yield.

9.
PLoS Pathog ; 11(10): e1005231, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26485146

ABSTRACT

Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2-OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants.


Subject(s)
Disease Resistance/physiology , Plant Proteins/metabolism , Signal Transduction/physiology , Stress, Physiological/physiology , Oryza , Phosphorylation , Plant Diseases , Transcription Factors/metabolism , Tyrosine/metabolism
10.
Plant J ; 83(6): 1069-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26243209

ABSTRACT

Methylation patterns of plants are unique as, in addition to the methylation at CG dinucleotides that occurs in mammals, methylation also occurs at non-CG sites. Genes are methylated at CG sites, but transposable elements (TEs) are methylated at both CG and non-CG sites. The role of non-CG methylation in transcriptional silencing of TEs is being extensively studied at this time, but only very rare transpositions have been reported when non-CG methylation machineries have been compromised. To understand the role of non-CG methylation in TE suppression and in plant development, we characterized rice mutants with changes in the chromomethylase gene, OsCMT3a. oscmt3a mutants exhibited a dramatic decrease in CHG methylation, changes in the expression of some genes and TEs, and pleiotropic developmental abnormalities. Genome resequencing identified eight TE families mobilized in oscmt3a during normal propagation. These TEs included tissue culture-activated copia retrotransposons Tos17 and Tos19 (Lullaby), a pericentromeric clustered high-copy-number non-autonomous gypsy retrotransposon Dasheng, two copia retrotransposons Osr4 and Osr13, a hAT-tip100 transposon DaiZ, a MITE transposon mPing, and a LINE element LINE1-6_OS. We confirmed the transposition of these TEs by polymerase chain reaction (PCR) and/or Southern blot analysis, and showed that transposition was dependent on the oscmt3a mutation. These results demonstrated that OsCMT3a-mediated non-CG DNA methylation plays a critical role in development and in the suppression of a wide spectrum of TEs. These in planta mobile TEs are important for studying the interaction between TEs and the host genome, and for rice functional genomics.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Transposable Elements , Mutation , Oryza/genetics , Plant Proteins/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Gene Expression Regulation, Plant , Gibberellins/biosynthesis , Gibberellins/genetics , Molecular Sequence Data , Oryza/growth & development , Plant Proteins/metabolism , Retroelements
11.
Plant Signal Behav ; 10(3): e991569, 2015.
Article in English | MEDLINE | ID: mdl-25738428

ABSTRACT

OsPti1a (Pto-interacting protein 1a) has important roles in the regulation of immune responses in rice. Phosphorylation of a conserved threonine in OsPti1a is necessary to activate defense responses; however, the regulatory mechanism of OsPti1a-mediated immune responses is still obscure. Recently, we revealed that OsPti1a forms protein complex(es) at the plasma membrane and this localization is required for its function. Here, we show that membrane-localized OsPti1a was selectively phosphorylated. Additionally, phosphorylation was not required for the localization of OsPti1a at the membrane. These results suggest that OsPti1a protein is selectively regulated by its phosphorylation after OsPti1a localizes to the plasma membrane.


Subject(s)
Cell Membrane/metabolism , Disease Resistance , Oryza/metabolism , Plant Diseases , Plant Proteins/metabolism , Phosphorylation , Protein Transport , Threonine/metabolism
12.
Plant Physiol ; 166(1): 327-36, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24958714

ABSTRACT

Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein's amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice.


Subject(s)
Oryza/enzymology , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Cell Membrane/enzymology , Conserved Sequence , Lipoylation , Molecular Sequence Data , Oryza/immunology , Phenotype
13.
BMC Bioinformatics ; 15: 71, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24629057

ABSTRACT

BACKGROUND: Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. RESULTS: In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. CONCLUSION: TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.


Subject(s)
DNA Transposable Elements/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Animals , Drosophila melanogaster/genetics , Oryza/genetics , Polymerase Chain Reaction
14.
Autophagy ; 10(5): 878-88, 2014 May.
Article in English | MEDLINE | ID: mdl-24674921

ABSTRACT

In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.


Subject(s)
Autophagy/genetics , Flowers/growth & development , Lipid Metabolism/genetics , Oryza , Plant Proteins/physiology , Ubiquitin-Activating Enzymes/physiology , Flowers/genetics , Flowers/metabolism , Meiosis/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plants, Genetically Modified , Pollen/genetics , Pollen/metabolism
15.
Rice (N Y) ; 7(1): 32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26224561

ABSTRACT

BACKGROUND: To identify genes that potentially regulate the accumulation, mobilization, and transport of photoassimilates in rice (Oryza sativa L.) leaves, we recently screened a mutant collection of rice by iodine staining to visualize leaf starch contents. From this screening, we isolated a rice mutant that exhibits hyperaccumulation of starch in leaves and designated it as the Leaf Starch Excess 1 (LSE1) mutant. Here, we report two other rice LSE mutants, LSE2 and LSE3. RESULTS: Unlike lse1 plants, lse2 and lse3 plants displayed retarded growth; lse2 showed an extremely dwarf phenotype and rarely survived in paddy fields; lse3 showed inhibited growth with pale green leaf blades, low tiller numbers, reduced height, and low grain yield. In lse2 and lse3 plants, the mature source leaves contained larger amounts of starch and sucrose than those in wild-type and lse1 plants. Furthermore, microscopic observations of leaf transverse sections indicated that hyperaccumulation of starch in chloroplasts of mesophyll and bundle sheath cells occurred in lse2 and lse3 plants, while that in vascular cells was noticeable only in lse3 leaves. CONCLUSIONS: The distinct phenotypes of these three LSE mutants suggest that the LSE2 and LSE3 mutations occur because of disruption of novel genes that might be involved in the path of sucrose transport from mesophyll cells to phloem sieve elements in rice leaves, the mechanism for which has not yet been elucidated.

16.
Physiol Plant ; 150(1): 55-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23621683

ABSTRACT

A variety of labdane-related diterpenoids, including phytocassanes, oryzalexins and momilactones, were identified as phytoalexins in rice (Oryza sativa L.). Momilactone B was also isolated as an allelochemical exuded from rice roots. The biosynthetic genes of these phytoalexins have been identified, including six labdane-related diterpene cyclase genes such as OsCPS2, OsCPS4, OsKSL4, OsKSL7, OsKSL8 and OsKSL10. Here we identified an OsCPS4 knockdown mutant, cps4-tos, by screening Tos17 mutant lines using polymerase chain reaction. OsCPS4 encodes a syn-copalyl diphosphate synthase responsible for momilactones and oryzalexin S biosynthesis. Because Tos17 was inserted into the third intron of OsCPS4, the mature OsCPS4 mRNA was detected in the cps4-tos mutant as well as the wild type. Nevertheless, mature OsCPS4 transcript levels in the cps4-tos mutant were about one sixth those in the wild type. The cps4-tos mutant was more susceptible to rice blast fungus than the wild type, possibly due to lower levels of momilactones and oryzalexin S in the mutant. Moreover, co-cultivation experiments suggested that the allelopathic effect of cps4-tos against some kinds of lowland weeds was significantly lower than that of the wild type, probably because of lower momilactone content exuded from cps4-tos roots. A reverse-genetic strategy using the cps4-tos mutant showed the possible roles of momilactones not only as phytoalexins but also as allelopathic substances.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Diterpenes/metabolism , Lactones/chemistry , Oryza/chemistry , Oryza/physiology , Plant Proteins/physiology , Sesquiterpenes/chemical synthesis , Alkyl and Aryl Transferases/genetics , Allelopathy , Disease Resistance/genetics , Gene Knockdown Techniques , Mutagenesis, Insertional , Oryza/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Polymerase Chain Reaction , Retroelements , Sesquiterpenes/pharmacology , Phytoalexins
17.
Rice (N Y) ; 7(1): 9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26055993

ABSTRACT

BACKGROUND: Aspartic protease (APs) plays important roles in plant growth, development and biotic and abiotic stresses. We previously reported that the expression of a rice AP gene (OsAP77, Os10g0537800) was induced by probenazole (PBZ), a chemical inducer of disease resistance. In this study we examined some characteristics of this gene in response to fungal, bacterial and viral pathogens. RESULTS: To elucidate the spatial and temporal expression of OsAP77, the chimeric gene was constructed carrying the structural gene encoding ß-glucuronidase (GUS) driven by the OsAP77 promoter. This construct was introduced into rice and the transgenic lines were tested to analyze gene expression by fungal, bacterial and viral infections. Inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae revealed the enhanced GUS activities in vascular tissues surrounding the symptom sites by each pathogen. Moreover, GUS activity also increased after inoculation with Cucumber mosaic virus (CMV). Transgenic plants immersed in a solution containing salicylic acid (SA), isonicotinic acid (INA), hydrogen peroxide (H2O2) or abscisic acid (ABA) showed an increased level of GUS activity exclusively in vascular tissues. RT-PCR analysis showed that OsAP77 was induced not only by infection with these pathogens, but also after treatment with SA, INA, H2O2 or ABA. A knockout mutant line of OsAP77 by the insertion of Tos17 after inoculation with M. oryzae, X. oryzae pv. oryzae or CMV showed an enhanced susceptibility compared to wild type. CONCLUSION: These results suggest that the expression of OsAP77 is induced by pathogen infection and defense related signaling molecules in a vascular tissue specific manner and that this gene has a positive role of defense response against fungal, bacterial and viral infections.

18.
Rice (N Y) ; 6(1): 30, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24280269

ABSTRACT

BACKGROUND: Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. RESULTS: The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. CONCLUSION: These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

19.
PLoS One ; 8(11): e78269, 2013.
Article in English | MEDLINE | ID: mdl-24223786

ABSTRACT

Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have ß-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF) to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX) decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5)-linked l-Ara (LM6) and ß-(1,4)-linked d-Xyl (LM10 and LM11) residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.


Subject(s)
Cell Wall/metabolism , Cellulose/metabolism , Gene Expression Regulation, Plant , Glycoside Hydrolases/genetics , Oryza/genetics , Plant Proteins/genetics , Xylans/metabolism , Arabinose/metabolism , Biofuels , Cell Wall/chemistry , Cellulose/chemistry , Glucose/metabolism , Glycoside Hydrolases/classification , Glycoside Hydrolases/metabolism , Immunohistochemistry , Oryza/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Plants, Genetically Modified , Substrate Specificity , Xylans/chemistry
20.
Front Plant Sci ; 4: 147, 2013.
Article in English | MEDLINE | ID: mdl-23750161

ABSTRACT

To identify potential regulators of photoassimilate partitioning, we screened for rice mutant plants that accumulate high levels of starch in the leaf blades, and a mutant line leaf starch excess 1 (LSE1) was obtained and characterized. The starch content in the leaf blades of LSE1 was more than 10-fold higher than that in wild-type plants throughout the day, while the sucrose content was unaffected. The gene responsible for the LSE1 phenotype was identified by gene mapping to be a gene encoding α-glucan water dikinase, OsGWD1 (Os06g0498400), and a 3.4-kb deletion of the gene was found in the mutant plant. Despite the hyperaccumulation of starch in their leaf blades, LSE1 plants exhibited no significant change in vegetative growth, presenting a clear contrast to the reported mutants of Arabidopsis thaliana and Lotus japonicus in which disruption of the genes for α-glucan water dikinase leads to marked inhibition of vegetative growth. In reproductive growth, however, LSE1 exhibited fewer panicles per plant, lower percentage of ripened grains and smaller grains; consequently, the grain yield was lower in LSE1 plants than in wild-type plants by 20~40%. Collectively, although α-glucan water dikinase was suggested to have universal importance in leaf starch degradation in higher plants, the physiological priority of leaf starch in photoassimilate allocation may vary among plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...