Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
J Virol ; : e0071424, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809021

ABSTRACT

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.

2.
FEBS Open Bio ; 14(6): 942-954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757397

ABSTRACT

Staphylococcus aureus produces large amounts of toxins and virulence factors. In patients with underlying diseases or compromised immune systems, this bacterium can lead to severe infections and potentially death. In this study, the crystal structure of the complex of S. aureus lipase (SAL), which is involved in the growth of this bacterium, with petroselinic acid (PSA), an inhibitor of unsaturated fatty acids, was determined by X-ray crystallography. Recently, PSA was shown to inhibit S. aureus biofilm formation and the enzymatic activity of SAL. To further characterize the inhibitory mechanism, we determined the half-inhibitory concentration of SAL by PSA and the crystal structure of the complex. The IC50 of the inhibitory effect of PSA on SAL was 3.4 µm. SAL and PSA inhibitors were co-crystallized, and diffraction data sets were collected to 2.19 Å resolution at SPring-8 to determine the crystal structure and elucidate the detailed structural interactions. The results show that the fatty acid moiety of PSA is tightly bound to a hydrophobic pocket extending in two directions around the catalytic residue Ser116. Ser116 was also covalently bonded to the carbon of the unsaturated fatty acid moiety, and an oxyanion hole in SAL stabilized the electrons of the double bond. The difference in inhibitory activity between PSA and ester compounds revealed a structure-activity relationship between SAL and PSA. Additional research is required to further characterize the clinical potential of PSA.


Subject(s)
Lipase , Staphylococcus aureus , Staphylococcus aureus/enzymology , Crystallography, X-Ray , Lipase/chemistry , Lipase/metabolism , Lipase/antagonists & inhibitors , Models, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology
3.
J Chem Inf Model ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768949

ABSTRACT

Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency. This protocol selects an anchor atom and growth site pair, which is desirable for a hit-to-lead strategy starting from a 3D complex structure. We developed and fine-tuned the protocol using a training data set and assessed it using a test data set of the preceding hit-to-lead strategy. The protocol was tested for experimentally determined structures and molecular dynamics (MD) ensembles. The protocol had a high prediction accuracy for applying MD ensembles, owing to the consideration of protein flexibility. The SINCHO protocol enables medicinal chemists to visualize and modify functional groups in a hit-to-lead manner.

4.
Bioorg Med Chem Lett ; 100: 129649, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38341162

ABSTRACT

Peptides are mid-size molecules (700-2000 g/mol) and have attracted particular interest as therapeutic modalities as they are superior in controlling protein-protein interactions, a process that is a typical drug target category, compared with small molecules (<500 g/mol). In 2020, we identified KS-58 (1333 g/mol) as a K-Ras(G12D)-inhibitory bicyclic peptide and suggested its cell membrane permeability. However, the membrane permeability mechanism had not been elucidated. In this study, we aim to clarify the mechanism by molecular dynamics (MD) simulations. Initially, we simulated the molecular conformations of KS-58 in water (a polar solvent) and in chloroform (a non-polar solvent). The identified stable conformations were significantly different in each solvent. KS-58 behaves as a chameleon-like molecule as it alters its polar surface area (PSA) depending on the solvent environment. It was also discovered that orientation of Asp's side chain is a critical energy barrier for KS-58 altering its conformation from hydrophilic to lipophilic. Taking these properties into consideration, we simulated its lipid bilayer membrane permeability. KS-58 shifted toward the inside of the lipid bilayer membrane with altering its conformations to lipophilic. When the simulation condition was set in deionized form of that carboxy group of Asp, KS-58 traveled deeper inside the cell membrane. PSA and the depth of the membrane penetration correlated. In vitro data suggested that cell membrane permeability of KS-58 is improved in weakly acidic conditions leading to partial deionization of the carboxy group. Our data provide an example of the molecular properties of mid-size peptides with membrane accessibility and propose an effective metadynamics approach to elucidate such molecular mechanisms by MD simulations.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Peptides, Cyclic , Lipid Bilayers/chemistry , Peptides/chemistry , Solvents/chemistry , Permeability
5.
Structure ; 32(3): 352-361.e5, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38194963

ABSTRACT

Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.


Subject(s)
Methionine , Humans , Orexins , Ligands , Orexin Receptors/genetics , Orexin Receptors/chemistry , Magnetic Resonance Spectroscopy
6.
Chemistry ; 30(11): e202303548, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38012076

ABSTRACT

We herein evaluate a biological applicability of 1,3-substituted cuneanes as an isostere of m-substituted benzenes based on its structural similarity. An investigation of a method to obtain 1,3-substituted cuneanes by selective isomerization of 1,4-substituted cubanes enables this attempt by giving a key synthetic step to obtain a cuneane analogs of pharmaceuticals having m-substituted benzene moiety. Biological evaluation of the synthesized analogs and in silico study of the obtained result revealed a potential usage of cuneane skeleton in medicinal chemistry.


Subject(s)
Benzene Derivatives , Benzene , Benzene/chemistry , Isomerism , Benzene Derivatives/chemistry
7.
J Chem Inf Model ; 63(24): 7768-7777, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38085669

ABSTRACT

Peptides have attracted much attention recently owing to their well-balanced properties as drugs against protein-protein interaction (PPI) surfaces. Molecular simulation-based predictions of binding sites and amino acid residues with high affinity to PPI surfaces are expected to accelerate the design of peptide drugs. Mixed-solvent molecular dynamics (MSMD), which adds probe molecules or fragments of functional groups as solutes to the hydration model, detects the binding hotspots and cryptic sites induced by small molecules. The detection results vary depending on the type of probe molecule; thus, they provide important information for drug design. For rational peptide drug design using MSMD, we proposed MSMD with amino acid residue probes, named amino acid probe-based MSMD (AAp-MSMD), to detect hotspots and identify favorable amino acid types on protein surfaces to which peptide drugs bind. We assessed our method in terms of hotspot detection at the amino acid probe level and binding free energy prediction with amino acid probes at the PPI site for the complex structure that formed the PPI. In hotspot detection, the max-spatial probability distribution map (max-PMAP) obtained from AAp-MSMD detected the PPI site, to which each type of amino acid can bind favorably. In the binding free energy prediction using amino acid probes, ΔGFE obtained from AAp-MSMD roughly estimated the experimental binding affinities from the structure-activity relationship. AAp-MSMD, with amino acid probes, provides estimated binding sites and favorable amino acid types at the PPI site of a target protein.


Subject(s)
Amino Acids , Molecular Dynamics Simulation , Solvents/chemistry , Amino Acids/metabolism , Proteins/chemistry , Binding Sites , Peptides/chemistry , Protein Binding
8.
J Neurochem ; 167(6): 753-765, 2023 12.
Article in English | MEDLINE | ID: mdl-37975558

ABSTRACT

Sphingolipidoses are inherited metabolic disorders associated with glycosphingolipids accumulation, neurodegeneration, and neuroinflammation leading to severe neurological symptoms. Lysoglycosphingolipids (lysoGSLs), also known to accumulate in the tissues of sphingolipidosis patients, exhibit cytotoxicity. LysoGSLs are the possible pathogenic cause, but the mechanisms are still unknown in detail. Here, we first show that lysoGSLs are potential inhibitors of phosphoinositide 3-kinase (PI3K) to reduce cell survival signaling. We found that phosphorylated Akt was commonly reduced in fibroblasts from patients with sphingolipidoses, including GM1/GM2 gangliosidoses and Gaucher's disease, suggesting the contribution of lysoGSLs to the pathogenesis. LysoGSLs caused cell death and decreased the level of phosphorylated Akt as in the patient fibroblasts. Extracellularly administered lysoGM1 permeated the cell membrane to diffusely distribute in the cytoplasm. LysoGM1 and lysoGM2 also inhibited the production of phosphatidylinositol-(3,4,5)-triphosphate and the translocation of Akt from the cytoplasm to the plasma membrane. We also predicted that lysoGSLs could directly bind to the catalytic domain of PI3K by in silico docking study, suggesting that lysoGSLs could inhibit PI3K by directly interacting with PI3K in the cytoplasm. Furthermore, we revealed that the increment of lysoGSLs amounts in the brain of sphingolipidosis model mice correlated with the neurodegenerative progression. Our findings suggest that the down-regulation of PI3K/Akt signaling by direct interaction of lysoGSLs with PI3K in the brains is a neurodegenerative mechanism in sphingolipidoses. Moreover, we could propose the intracellular PI3K activation or inhibition of lysoGSLs biosynthesis as novel therapeutic approaches for sphingolipidoses because lysoGSLs should be cell death mediators by directly inhibiting PI3K, especially in neurons.


Subject(s)
Phosphatidylinositol 3-Kinases , Sphingolipidoses , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt/metabolism , Sphingolipidoses/metabolism , Cell Death
9.
Plant Cell Physiol ; 64(12): 1551-1562, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37801291

ABSTRACT

Folate, also known as vitamin B9, is an essential cofactor for a variety of enzymes and plays a crucial role in many biological processes. We previously reported that plastidial folate prevents starch biosynthesis triggered by the influx of sugar into non-starch-accumulating plastids, such as etioplasts, and chloroplasts under darkness; hence the loss of plastidial folate induces the accumulation of starch in plastids. To understand the molecular mechanism underlying this phenomenon, we screened our in-house chemical library and searched their derivatives to identify chemicals capable of inducing starch accumulation in etioplasts. The results revealed four chemicals, compounds #120 and #375 and their derivatives, compounds #120d and #375d, respectively. The derivative compounds induced starch accumulation in etioplasts and suppressed hypocotyl elongation in dark-grown Arabidopsis seedlings. They also inhibited the post-germinative growth of seedlings under illumination. All four chemicals contained the sulfonamide group as a consensus structure. The sulfonamide group is also found in sulfa drugs, which exhibit antifolate activity, and in sulfonylurea herbicides. Further analyses revealed that compound #375d induces starch accumulation by inhibiting folate biosynthesis. By contrast, compound #120d neither inhibited folate biosynthesis nor exhibited the herbicide activity. Protein and metabolite analyses suggest that compound #120d abrogates folate-dependent inhibition of starch accumulation in etioplasts by enhancing starch biosynthesis.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Folic Acid/metabolism , Starch/metabolism , Plastids/metabolism , Seedlings/metabolism , Sulfonamides/metabolism
10.
Biosci Biotechnol Biochem ; 87(12): 1470-1477, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37715303

ABSTRACT

Neohesperidin dihydrochalcone (NHDC) is a sweetener, which interacts with the transmembrane domain (TMD) of the T1R3 subunit of the human sweet taste receptor. Although NHDC and a sweet taste inhibitor lactisole share similar structural motifs, they have opposite effects on the receptor. This study involved the creation of an NHDC-docked model of T1R3 TMD through mutational analyses followed by in silico simulations. When certain NHDC derivatives were docked to the model, His7345.44 was demonstrated to play a crucial role in activating T1R3 TMD. The NHDC-docked model was then compared with a lactisole-docked inactive form, several residues were characterized as important for the recognition of NHDC; however, most of them were distinct from those of lactisole. Residues such as His6413.33 and Gln7947.38 were found to be oriented differently. This study provides useful information that will facilitate the design of sweeteners and inhibitors that interact with T1R3 TMD.


Subject(s)
Chalcones , Receptors, G-Protein-Coupled , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Hesperidin/analogs & derivatives , Chalcones/chemistry , Molecular Docking Simulation , Humans , Sweetening Agents/chemistry , Molecular Structure
11.
Biomolecules ; 13(7)2023 06 24.
Article in English | MEDLINE | ID: mdl-37509072

ABSTRACT

Vitamin D3 (1) is metabolized by various cytochrome P450 (CYP) enzymes, resulting in the formation of diverse metabolites. Among them, 4α,25-dihydroxyvitamin D3 (6a) and 4ß,25-dihydroxyvitamin D3 (6b) are both produced from 25-hydroxyvitamin D3 (2) by CYP3A4. However, 6b is detectable in serum, whereas 6a is not. We hypothesized that the reason for this is a difference in the susceptibility of 6a and 6b to CYP24A1-mediated metabolism. Here, we synthesized 6a and 6b, and confirmed that 6b has greater metabolic stability than 6a. We also identified 4α,24R,25- and 4ß,24R,25-trihydroxyvitamin D3 (16a and 16b) as metabolites of 6a and 6b, respectively, by HPLC comparison with synthesized authentic samples. Docking studies suggest that the ß-hydroxy group at C4 contributes to the greater metabolic stability of 6b by blocking a crucial hydrogen-bonding interaction between the C25 hydroxy group and Leu325 of CYP24A1.


Subject(s)
Cholecalciferol , Vitamin D , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Cytochrome P-450 Enzyme System , Chromatography, High Pressure Liquid
12.
Chem Commun (Camb) ; 59(57): 8862-8865, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37377065

ABSTRACT

Thrombin-binding aptamer (TBA), which forms a G-quadruplex (G4) structure with anti-parallel topology, interacts with thrombin to inhibit its enzymatic activity. Here we show that the G4-topology-altering ligand L2H2-2M2EA-6LCO (6LCO) changes the anti-parallel topology of TBA G4 to the parallel topology, thereby abrogating the thrombin-inhibitory activity of TBA. This finding suggests that G4 ligands that alter topology may be promising drug candidates for diseases involving G4-binding proteins.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Thrombin/chemistry , Ligands , Aptamers, Nucleotide/chemistry
13.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176075

ABSTRACT

Remifentanil (REM) and fentanyl (FEN) are commonly used analgesics that act by activating a µ-opioid receptor (MOR). Although optimal concentrations of REM can be easily maintained during surgery, it is sometimes switched to FEN for optimal pain regulation. However, standards for this switching protocol remain unclear. Opioid anesthetic efficacy is decided in part by MOR desensitization; thus, in this study, we investigated the desensitization profiles of REM and FEN to MOR. The efficacy and potency during the 1st administration of REM or FEN in activating the MOR were almost equal. Similarly, in ß arrestin recruitment, which determines desensitization processes, they showed no significant differences. In contrast, the 2nd administration of FEN resulted in a stronger MOR desensitization potency than that of REM, whereas REM showed a higher internalization potency than FEN. These results suggest that different ß arrestin-mediated signaling caused by FEN or REM led to their distinct desensitization and internalization processes. Our three-dimensional analysis, with in silico binding of REM and FEN to MOR models, highlighted that REM and FEN bound to similar but distinct sites of MOR and led to distinct ß arrestin-mediated profiles, suggesting that distinct binding profiles to MOR may alter ß arrestin activity, which accounts for MOR desensitization and internalization.


Subject(s)
Fentanyl , Receptors, Opioid , Receptors, Opioid/metabolism , Fentanyl/pharmacology , Remifentanil/pharmacology , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology , beta-Arrestins/metabolism , Morphine
14.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37086438

ABSTRACT

SUMMARY: Understanding the binding site of the target protein is essential for rational drug design. Pocket detection software predicts the ligand binding site of the target protein; however, the predicted protein pockets are often excessively estimated in comparison with the actual volume of the bound ligands. This study proposes a refinement tool for the pockets predicted by an alpha sphere-based approach, Pocket to Concavity (P2C). P2C is divided into two modes: Ligand-Free (LF) and Ligand-Bound (LB) modes. The LF mode provides the shape of the deep and druggable concavity where the core scaffold can bind. The LB mode searches the deep concavity around the bound ligand. Thus, P2C is useful for identifying and designing desirable compounds in Structure-Based Drug Design (SBDD). AVAILABILITY AND IMPLEMENTATION: Pocket to Concavity is freely available at https://github.com/genki-kudo/Pocket-to-Concavity. This tool is implemented in Python3 and Fpocket2.


Subject(s)
Proteins , Software , Protein Conformation , Proteins/chemistry , Binding Sites , Protein Binding , Ligands
15.
J Infect Dis ; 228(Suppl 7): S479-S487, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37119290

ABSTRACT

BACKGROUND: Our previous study demonstrated that the fruit bat (Yaeyama flying fox)-derived cell line FBKT1 showed preferential susceptibility to Ebola virus (EBOV), whereas the human cell line HEK293T was similarly susceptible to EBOV and Marburg virus (MARV). This was due to 3 amino acid differences of the endosomal receptor Niemann-Pick C1 (NPC1) between FBKT1 and HEK293T (ie, TET and SGA, respectively, at positions 425-427), as well as 2 amino acid differences at positions 87 and 142 of the viral glycoprotein (GP) between EBOV and MARV. METHODS/RESULTS: To understand the contribution of these amino acid differences to interactions between NPC1 and GP, we performed molecular dynamics simulations and binding free energy calculations. The average binding free energies of human NPC1 (hNPC1) and its mutant having TET at positions 425-427 (hNPC1/TET) were similar for the interaction with EBOV GP. In contrast, hNPC1/TET had a weaker interaction with MARV GP than wild-type hNPC1. As expected, substitutions of amino acid residues at 87 or 142 in EBOV and MARV GPs converted the binding affinity to hNPC1/TET. CONCLUSIONS: Our data provide structural and energetic insights for understanding potential differences in the GP-NPC1 interaction, which could influence the host tropism of EBOV and MARV.


Subject(s)
Chiroptera , Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Animals , Humans , Niemann-Pick C1 Protein , Marburgvirus/metabolism , HEK293 Cells , Virus Internalization , Glycoproteins/metabolism , Ebolavirus/metabolism , Amino Acids
16.
Front Mol Biosci ; 10: 1110567, 2023.
Article in English | MEDLINE | ID: mdl-36814641

ABSTRACT

Driving mechanisms of many biological functions in a cell include physical interactions of proteins. As protein-protein interactions (PPIs) are also important in disease development, protein-protein interactions are highlighted in the pharmaceutical industry as possible therapeutic targets in recent years. To understand the variety of protein-protein interactions in a proteome, it is essential to establish a method that can identify similarity and dissimilarity between protein-protein interactions for inferring the binding of similar molecules, including drugs and other proteins. In this study, we developed a novel method, protein-protein interaction-Surfer, which compares and quantifies similarity of local surface regions of protein-protein interactions. protein-protein interaction-Surfer represents a protein-protein interaction surface with overlapping surface patches, each of which is described with a three-dimensional Zernike descriptor (3DZD), a compact mathematical representation of 3D function. 3DZD captures both the 3D shape and physicochemical properties of the protein surface. The performance of protein-protein interaction-Surfer was benchmarked on datasets of protein-protein interactions, where we were able to show that protein-protein interaction-Surfer finds similar potential drug binding regions that do not share sequence and structure similarity. protein-protein interaction-Surfer is available at https://kiharalab.org/ppi-surfer.

17.
Science ; 379(6632): 586-591, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758070

ABSTRACT

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Subject(s)
Alphainfluenzavirus , Antiviral Agents , Betainfluenzavirus , Biological Products , Enzyme Inhibitors , Methyltransferases , RNA Caps , Tubercidin , Virus Replication , Animals , Humans , Mice , RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , Virus Replication/drug effects , Alphainfluenzavirus/drug effects , Betainfluenzavirus/drug effects , Biological Products/chemistry , Biological Products/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Tubercidin/analogs & derivatives , Tubercidin/pharmacology , Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Streptomyces/chemistry , Computer Simulation , A549 Cells
19.
Nat Struct Mol Biol ; 30(2): 176-187, 2023 02.
Article in English | MEDLINE | ID: mdl-36604501

ABSTRACT

Mitochondrial ß-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic ß-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last ß-strand (ß-signal) of the substrate-the 19-ß-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first ß-segment (ß1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces ß1 to promote its pairing with Tom40's last ß-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial ß-barrel folding.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Cryoelectron Microscopy , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Mitochondrial Proteins/metabolism
20.
Biochem Biophys Res Commun ; 636(Pt 1): 10-16, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36332470

ABSTRACT

The vasoactive intestinal peptide receptor 2 (VIPR2) has attracted attention as a drug target for the treatment of mental disorders, cancer, and immune diseases. In 2021, we identified the peptide KS-133 as a VIPR2-selective antagonist. In this study, we aimed to elucidate the binding mechanism between VIPR2 and KS-133. To this end, VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex models were constructed through AlphaFold version 2.0 and molecular dynamic simulations. Our models revealed that: (i) both KS-133 and VIP have helical structures, (ii) the interaction residues on VIPR2 for both peptides are similar, and (iii) the orientation of their helices upon their binding to VIPR2 are different by ∼45°. Interestingly, in the process of constructing the aforementioned models, an S-S bond formation between Cys25 and Cys192 of the human VIPR2 was identified. Although these two Cys residues are highly conserved among species (i.e., corresponding to Cys24 and Cys191 in the mouse), no previous reports regarding this S-S bond formation exist. In order to clarify the potential role of this S-S bond in the VIPR2 has functional consequences, a cell line expressing the mouse VIPR2(Cys24Ala, Cys191Ala) was generated. During the VIP stimulation of this cell line, the phosphorylation of AKT (a downstream signal marker of VIPR2) was found to be significantly attenuated, thereby suggesting that the S-S bond has a functional significance for VIPR2. Our study not only elucidates the VIPR2-binding mechanism of KS-133 for the first time, but also provides new insights into the structural biology of VIPR2.


Subject(s)
Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Peptide , Humans , Mice , Animals , Receptors, Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...