Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(18): 15846-15853, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571775

ABSTRACT

Lithium-ion batteries are used in various extreme environments, such as cold regions and outer space; thus, improvements in energy density, safety, and cycle life in these environments are urgently required. We investigated changes in the charge and discharge properties of Si-based electrodes in ionic liquid electrolytes with decreasing temperature and the cycle life at low temperature. The reversible capacity at low temperature was determined by the properties of the surface film on the electrodes and/or the ionic conductivity of the electrolytes. The electrode coated with a surface film formed at a low temperature exhibited insufficient capacity. In contrast, a Si-only electrode precoated with the surface film at room temperature exhibited a cycle life at low temperatures in ionic liquid electrolytes longer than that in conventional organic liquid electrolytes. Doping phosphorus into Si led to improved cycling performance, and its impact was more noticeable at lower temperatures.

2.
Biol Pharm Bull ; 35(8): 1244-8, 2012.
Article in English | MEDLINE | ID: mdl-22863920

ABSTRACT

It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.


Subject(s)
Antiparkinson Agents/pharmacology , Brain/drug effects , Dopamine/metabolism , Levodopa/adverse effects , Motor Activity/drug effects , Parkinson Disease/drug therapy , Tyrosine/analogs & derivatives , Animals , Antiparkinson Agents/adverse effects , Antiparkinson Agents/metabolism , Brain/metabolism , Dopamine/analogs & derivatives , Dose-Response Relationship, Drug , Levodopa/metabolism , Levodopa/therapeutic use , Male , Parkinson Disease/metabolism , Rats , Rats, Wistar , Tyrosine/adverse effects , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...