Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Pharmacol Res Perspect ; 11(1): e01043, 2023 02.
Article in English | MEDLINE | ID: mdl-36585794

ABSTRACT

Diabetes is a metabolic disorder with an increasing global prevalence. Somatostatin (SST), a peptide hormone, regulates hormone secretion via five SST receptor (SSTR) subtypes (SSTR1-5) in a tissue-specific manner. As SSTR5 is expressed in pancreatic ß-cells and intestinal L-cells, studies have suggested that SSTR5 regulates glucose tolerance through insulin and incretin secretion, thereby having a prominent role in diabetes. Moreover, SSTR5 knockout (KO) mice display enhanced insulin sensitivity; however, the underlying mechanism has not been clarified. Therefore, in this study, we investigate the effect of SSTR5 blockade on insulin resistance and the target organ using SSTR5 KO mice and a selective SSTR5 antagonist (compound-1). High-fat diet (HFD)-fed SSTR5 KO mice exhibited significantly lower homeostasis model assessment of insulin resistance (HOMA-IR) than HFD-fed wild-type mice. Two-week oral administration of compound-1 dose-dependently and significantly reduced changes in the levels of glycosylated hemoglobin (GHb), plasma glucose, plasma insulin, and HOMA-IR in male KK-Ay /Ta Jcl mice (KK-Ay mice), a model of obese type 2 diabetes with severe insulin resistance. Additionally, compound-1 significantly increased the glucose infusion rate while decreasing hepatic glucose production in male KK-Ay mice, as evidenced by hyperinsulinemic-euglycemic clamp analyses. In addition, compound-1 ameliorated the insulin-induced Akt phosphorylation suppression by octreotide in the liver of male C57BL/6J mice. Collectively, our results demonstrate that selective SSTR5 inhibition can improve insulin sensitivity by enhancing liver insulin action; thus, selective SSTR5 antagonists represent potentially novel therapeutic agents for type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Mice, Inbred C57BL , Insulin/metabolism , Glucose/metabolism , Liver/metabolism , Mice, Knockout
2.
Bioorg Med Chem ; 25(15): 4175-4193, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28642028

ABSTRACT

Somatostatin receptor subtype 5 (SSTR5) has emerged as a novel attractive drug target for type 2 diabetes mellitus. Starting from N-benzyl azetidine derivatives 1 and 2 as in-house hit compounds, we explored the introduction of a carboxyl group into the terminal benzene of 1 to enhance SSTR5 antagonistic activity by the combination of the substituents at the 3-position of the isoxazoline. Incorporation of a carboxyl group at the 4-position of the benzene ring resulted in a significant enhancement in potency, however, the 4-benzoic acid derivative 10c exhibited moderate human ether-a-go-go related gene (hERG) inhibitory activity. A subsequent optimization study revealed that replacement of the 4-benzoic acid with an isonipecotic acid dramatically reduced hERG inhibition (5.6% inhibition at 30µM) by eliminating π-related interaction with hERG K+ channel, which resulted in the identification of 1-(2-((2,6-diethoxy-4'-fluorobiphenyl-4-yl)methyl)-5-oxa-2,6-diazaspiro[3.4]oct-6-en-7-yl)piperidin-4-carboxylic acid 25a (hSSTR5/mSSTR5 IC50=9.6/57nM). Oral administration of 25a in high-fat diet fed C57BL/6J mice augmented insulin secretion in a glucose-dependent manner and lowered blood glucose concentration.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , CHO Cells , Carbon-13 Magnetic Resonance Spectroscopy , Cricetulus , Drug Discovery , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Proton Magnetic Resonance Spectroscopy
3.
Bioorg Med Chem ; 25(15): 4153-4162, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28622905

ABSTRACT

Somatostatin (SST) is a peptide hormone comprising 14 or 28 amino acids that inhibits endocrine and exocrine secretion via five distinct G-protein-coupled receptors (SSTR1-5). SSTR5 has an important role in inhibiting the secretion of pancreatic and gastrointestinal hormones (e.g., insulin, GLP-1, PYY) through the binding of SSTs; hence, SSTR5 antagonists are expected to be novel anti-diabetic drugs. In the course of our lead generation program of SSTR5 antagonists, we have discovered a novel spiroazetidine derivative 3a. However, pharmacological evaluation of 3a revealed that it had to be administered at a high dose (100mg/kg) to show a persistent glucose-lowering effect in an oral glucose tolerance test (OGTT). We therefore initiated an optimization study based on 3a aimed at improving the antagonistic activity and mean residence time (MRT), resulting in the identification of 2-cyclopropyl-5-methoxybiphenyl derivative 3k. However, 3k did not show a sufficient persistent glucose-lowering effect in an OGTT; moreover, hERG inhibition was observed. Hence, further optimization study of the biphenyl moiety of compound 3k, focused on improving the pharmacokinetic (PK) profile and hERG inhibition, was conducted. Consequently, the introduction of a chlorine atom at the 6-position on the biphenyl moiety addressed a putative metabolic soft spot and increased the dihedral angle of the biphenyl moiety, leading to the discovery of 3p with an improved PK profile and hERG inhibition. Furthermore, 3p successfully exhibited a persistent glucose-lowering effect in an OGTT at a dose of 3mg/kg.


Subject(s)
Ether-A-Go-Go Potassium Channels/genetics , Gene Expression Regulation/drug effects , Hypoglycemic Agents/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Drug Design , Drug Discovery , Glucose Tolerance Test , Humans , Hypoglycemic Agents/chemistry
4.
Bioorg Med Chem ; 20(10): 3332-58, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22503460

ABSTRACT

In our search for a novel class of non-TZD, non-carboxylic acid peroxisome proliferator-activated receptor (PPAR) γ agonists, we explored alternative lipophilic templates to replace benzylpyrazole core of the previously reported agonist 1. Introduction of a pentylsulfonamide group into arylpropionic acids derived from previous in-house PPARγ ligands succeeded in the identification of 2-pyridyloxybenzene-acylsulfonamide 2 as a lead compound. Docking studies of compound 2 suggested that a substituent para to the central benzene ring should be incorporated to effectively fill the Y-shaped cavity of the PPARγ ligand-binding domain (LBD). This strategy led to significant improvement of PPARγ activity. Further optimization to balance in vitro activity and metabolic stability allowed the discovery of the potent, selective and orally efficacious PPARγ agonist 8f. Structure-activity relationship study as well as detailed analysis of the binding mode of 8f to the PPARγ-LBD revealed the essential structural features of this series of ligands.


Subject(s)
Drug Design , Peroxisome Proliferator-Activated Receptors/agonists , Pyridines/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Acylation , Animals , Binding Sites , Blood Glucose/drug effects , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Crystallography, X-Ray , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Models, Molecular , Protein Binding/drug effects , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats, Wistar , Structure-Activity Relationship
5.
Mutat Res ; 725(1-2): 57-77, 2011 Oct 09.
Article in English | MEDLINE | ID: mdl-21801851

ABSTRACT

The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed.


Subject(s)
Carcinogenicity Tests/methods , Cell Transformation, Neoplastic , Animals , BALB 3T3 Cells , Cell Line , Genes, ras/genetics , Mice , Reproducibility of Results
6.
Chem Commun (Camb) ; 47(3): 1060-2, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21076755

ABSTRACT

A novel and rapid approach to chiral mono- or di-substituted spiroketals based on remote asymmetric induction by intramolecular iodoetherification of ene or diene ketals has been developed. This strategy concisely offers 5,5- and 5,6-spiroketals including the natural insect pheromone of the wasp.


Subject(s)
Furans/chemical synthesis , Pheromones/chemical synthesis , Spiro Compounds/chemical synthesis , Wasps/chemistry , Animals , Ethers/chemistry , Furans/chemistry , Iodine/chemistry , Models, Molecular , Pheromones/chemistry , Spiro Compounds/chemistry , Stereoisomerism
7.
J Radiat Res ; 51(3): 277-84, 2010.
Article in English | MEDLINE | ID: mdl-20215713

ABSTRACT

We investigated the mechanisms by which radiofrequency (RF) fields exert their activity, and the changes in both cell proliferation and the gene expression profile in the human cell lines, A172 (glioblastoma), H4 (neuroglioma), and IMR-90 (fibroblasts from normal fetal lung) following exposure to 2.1425 GHz continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) RF fields at three field levels. During the incubation phase, cells were exposed at the specific absorption rates (SARs) of 80, 250, or 800 mW/kg with both CW and W-CDMA RF fields for up to 96 h. Heat shock treatment was used as the positive control. No significant differences in cell growth or viability were observed between any test group exposed to W-CDMA or CW radiation and the sham-exposed negative controls. Using the Affymetrix Human Genome Array, only a very small (< 1%) number of available genes (ca. 16,000 to 19,000) exhibited altered expression in each experiment. The results confirm that low-level exposure to 2.1425 GHz CW and W-CDMA RF fields for up to 96 h did not act as an acute cytotoxicant in either cell proliferation or the gene expression profile. These results suggest that RF exposure up to the limit of whole-body average SAR levels as specified in the ICNIRP guidelines is unlikely to elicit a general stress response in the tested cell lines under these conditions.


Subject(s)
Cell Phone , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Radio Waves , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Progression , Fibroblasts/metabolism , Genome, Human , Heat-Shock Proteins/metabolism , Humans , Microwaves , Neoplasms/metabolism , Time Factors
8.
Bioelectromagnetics ; 31(2): 104-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19650078

ABSTRACT

Given the widespread use of the cellular phone today, investigation of potential biological effects of radiofrequency (RF) fields has become increasingly important. In particular, much research has been conducted on RF effects on brain function. To examine any biological effects on the central nervous system (CNS) induced by 1950 MHz modulation signals, which are controlled by the International Mobile Telecommunication-2000 (IMT-2000) cellular system, we investigated the effect of RF fields on microglial cells in the brain. We assessed functional changes in microglial cells by examining changes in immune reaction-related molecule expression and cytokine production after exposure to a 1950 MHz Wideband Code Division Multiple Access (W-CDMA) RF field, at specific absorption rates (SARs) of 0.2, 0.8, and 2.0 W/kg. Primary microglial cell cultures prepared from neonatal rats were subjected to an RF or sham field for 2 h. Assay samples obtained 24 and 72 h after exposure were processed in a blind manner. Results showed that the percentage of cells positive for major histocompatibility complex (MHC) class II, which is the most common marker for activated microglial cells, was similar between cells exposed to W-CDMA radiation and sham-exposed controls. No statistically significant differences were observed between any of the RF field exposure groups and the sham-exposed controls in percentage of MHC class II positive cells. Further, no remarkable differences in the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) were observed between the test groups exposed to W-CDMA signal and the sham-exposed negative controls. These findings suggest that exposure to RF fields up to 2 W/kg does not activate microglial cells in vitro.


Subject(s)
Brain/radiation effects , Electromagnetic Fields , Microglia/radiation effects , Animals , Animals, Newborn , Brain/metabolism , Cell Phone , Cells, Cultured , Genes, MHC Class II/radiation effects , Immunohistochemistry , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Microglia/metabolism , Rats , Temperature , Time Factors , Tumor Necrosis Factor-alpha/metabolism
9.
Int J Cancer ; 121(1): 47-54, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17290388

ABSTRACT

We previously reported that overexpressing connexin 26 (Cx26) enhances the spontaneous metastasis of mouse BL6 melanoma cells. In contrast, daily intraperitoneal injections of an oleamide derivative named MI-18 potently inhibits the spontaneous metastasis of BL6 cells. In the present study, we chemically synthesized a novel oleamide derivative named MI-22 and found that it also efficiently suppressed the spontaneous metastasis of BL6 cells. Both MI-18 and MI-22 inhibited the gap junction-mediated intercellular communications (GJIC) that are formed between HeLa cells by the ectopic expression of the hCx26 and hCx32 human connexin subtypes; however, they had no effect on GJIC mediated by hCx40, hCx43 or hCx45. Fluorescently labeled MI-18 primarily localized not only at plasma membrane but also at Golgi/endosome. This suggests that this oleamide derivative may also act on the Cx26 molecules that accumulate in the Golgi/endosome because of their overexpression. Notably, neither derivative had a cytotoxic effect on HeLa cells when they were added into the tissue culture medium. Taken together, we propose that the MI-18 and MI-22 oleamide derivatives may serve as prototypes for novel and clinically important anticancer drugs.


Subject(s)
Connexins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Oleic Acids/chemistry , Oleic Acids/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Connexin 26 , Connexins/classification , Connexins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Oleic Acids/chemical synthesis
10.
Bioelectromagnetics ; 27(5): 392-400, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16615058

ABSTRACT

To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.


Subject(s)
Cell Cycle/radiation effects , Cell Division/radiation effects , Cell Survival/radiation effects , Electromagnetic Fields , Animals , CHO Cells , Cricetinae
11.
Chem Commun (Camb) ; (8): 832-4, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16479282

ABSTRACT

The reaction of cyclohexa-2,5-dienyl-1-methylaldehyde and optically pure 1,2-diaryl-1,2-diamine followed by intramolecular bromo-amination produced a one-pot discrimination of two olefins in the cyclohexane system, which was used for the asymmetric synthesis of (-)-gamma-lycorane.


Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Bromine/chemistry , Cyclohexenes/chemistry , Amination , Magnetic Resonance Spectroscopy
12.
Mutat Res ; 587(1-2): 114-9, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16202641

ABSTRACT

To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.


Subject(s)
Chromosome Aberrations/radiation effects , Electromagnetic Fields/adverse effects , Adsorption , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line , Dose-Response Relationship, Radiation , Mice , Mitomycin/pharmacology
13.
Org Lett ; 7(15): 3303-6, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16018646

ABSTRACT

[reaction: see text]. CAN is a good reagent for the transformation of 2-hydroxyethyl ether units to alcohols. Significantly, many functional groups can tolerate the reaction conditions, although they do not survive under many previously reported removal conditions. The reaction mechanism is clarified.

15.
Mutat Res ; 560(1): 27-32, 2004 May 09.
Article in English | MEDLINE | ID: mdl-15099821

ABSTRACT

We have examined the mutational effects of hydrogen peroxide (H(2)O(2)) in the presence and absence of an extremely low-frequency magnetic field (ELFMF), using pTN89 plasmids. Mutations were detected in the supF gene carried by these plasmids in Escherichia coli. The plasmids were either treated with H(2)O(2) (1microM) alone at 37 degrees C for 4h, or were exposed to an ELFMF (60Hz, 5millitesla (mT)) simultaneously with H(2)O(2) treatment. The mutation frequency was 2.28 x 10(-4) for H(2)O(2) treatment alone, and 5.81 x 10(-4) for ELFMF exposure with H(2)O(2) treatment. We did not observe any mutations using treatment with ELFMF exposure alone. This indicates that the ELFMF may potentiate H(2)O(2)-induced mutation. Sequence analysis of the supF mutant plasmids revealed that base substitutions, G: C-->A :T transitions and G:C-->T:A transversions were dominant in both treatment groups, and there was no difference in the mutation spectrum or the hotspots between the groups. Therefore, ELFMFs may interact and potentiate the damage induced by H(2)O(2), resulting in an increase in the number of mutations.


Subject(s)
Electromagnetic Fields , Hydrogen Peroxide/toxicity , Mutation , Plasmids/drug effects , Base Sequence , DNA , Genes, Suppressor , Molecular Sequence Data , Plasmids/genetics , RNA, Transfer/genetics , Transfection
16.
Radiat Res ; 160(2): 232-7, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12859235

ABSTRACT

To assess the role of nuclear factor kappaB (NFKB) in cellular radiosensitivity, three different IkappaB-alpha (also known as NFKBIA) expression plasmids, i.e., S-IkappaB (mutations at (32, 36)Ser), Y-IkappaB (a mutation at (42)Tyr), and SY-IkappaB, were constructed and introduced into human brain tumor M054 cells. The clones were named as M054-S8, M054-Y2 and M054-SY4, respectively. Compared to the parental cell line, M054-S8 and M054-Y2 cells were more sensitive to X rays while M054-SY4 cells exhibited the greatest sensitivity. After treatment with N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor, the X-ray sensitivity of M054-S8 and M054-SY4 cells did not change, while that of M054-Y2 cells and the parental cells was enhanced. An increase in X-ray sensitivity accompanied by a decrease in translocation of NFKB to the nucleus in parental cells was observed after treatment with pervanadate, an inhibitor of tyrosine phosphatase, as well as in M054-S8 and M054-SY4 cells. Repair of potentially lethal damage (PLD) was observed in the parental cells but not in the clones. Four hours after irradiation (8 Gy), the expression of TP53 and phospho-p53 ((15)Ser) was induced in the parental cells but not in M054-S8, M054-Y2 or M054-SY4 cells. Our data suggest that inhibition of IkappaB-alpha phosphorylation at serine or tyrosine acts independently in sensitizing cells to X rays. NFKB may play a role in determining radiosensitivity and PLD repair in malignant glioma cells; TP53 may also be involved.


Subject(s)
Glioma/metabolism , Glioma/pathology , NF-kappa B/metabolism , Radiation Tolerance/drug effects , Cell Survival/radiation effects , Cloning, Molecular , DNA Repair , Gene Expression Regulation, Neoplastic , Humans , Leupeptins/pharmacology , Mutagenesis, Site-Directed , NF-kappa B/genetics , Phosphorylation/drug effects , Radiation Tolerance/genetics , Transfection , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Tumor Cells, Cultured/radiation effects , Vanadates/pharmacology
17.
Neurosci Lett ; 338(1): 88-90, 2003 Feb 20.
Article in English | MEDLINE | ID: mdl-12565147

ABSTRACT

We investigated the preferred orientation of human glioblastoma cells (A172) following exposure to static magnetic fields (SMF) at 10 Tesla in the presence or absence of collagen. A172 cells embedded in collagen gel were oriented perpendicular to the direction of the SMF. A172 cells cultured in the absence of collagen did not exhibit any specific orientation pattern after 7 days of exposure to the SMF. Thus we succeeded in evoking the magnetic orientation of human glioblastoma cells by exposure to the SMF. Our results suggest that the orientation of glioblastoma cell processes may be due to the arrangement of microtubules under the influence of magnetically oriented collagen fiber.


Subject(s)
Collagen Type I/pharmacology , Electromagnetic Fields , Glioblastoma/pathology , Cell Division/physiology , Humans , Tumor Cells, Cultured
18.
Bioelectromagnetics ; 24(1): 21-31, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12483662

ABSTRACT

Several epidemiologic studies have suggested an association between exposure to extremely low frequency (ELF) magnetic fields (MFs) and cancer in adults and children. A possible target of MFs is the immune system. The effects of the exposure to ELF MFs on the immunological functions of human peripheral blood mononuclear cells (PBMCs) obtained from healthy male volunteers were assessed by measuring the natural killer (NK) and lymphokine activated killer (LAK) activities and the production of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin-2 (IL-2), and interleukin-10 (IL-10). The PBMCs were exposed to three different MF: linearly polarized (vertical), circularly polarized, and elliptically polarized, at 50 and 60 Hz. Magnetic flux densities were set at 500, 100, 20, and 2 microT (rms) for vertical field and at 500 microT (rms) for the rotating fields. Using cytotoxicity assay and enzyme-linked immunosorbent assay (ELISA) for cytokine production, we could not find any effects of ELF MFs on the cytotoxic activities and the cytokines production of human PBMCs.


Subject(s)
Cytokines/biosynthesis , Electromagnetic Fields/adverse effects , Killer Cells, Lymphokine-Activated/metabolism , Killer Cells, Natural/metabolism , Adult , Cytotoxicity Tests, Immunologic , Humans , Male , Middle Aged
19.
In Vitro Cell Dev Biol Anim ; 39(8-9): 348-52, 2003.
Article in English | MEDLINE | ID: mdl-15038779

ABSTRACT

We investigated the effects of 6- and 10-T static magnetic fields (SMFs) on the expression of protooncogenes using Western blot immunohybridization methods. We used a SMF exposure system, which can expose cells to a spatially inhomogeneous 6 T with a strong magnetic field (MF) gradient (41.7 T/m) and a spatially homogeneous 10 T of the highest magnetic flux density in this experiment. HL-60 cells exposed to either 6- or 10-T SMF for periods of 1 to 48 h did not exhibit remarkable differences in levels of c-Myc and c-Fos protein expression, as compared with sham-exposed cells. In contrast, c-Jun protein expression increased in HL-60 cells after exposure to 6-T SMF for 24, 36, 48, and 72 h. These results suggest that a homogeneous 10-T SMF does not alter the expression of the c-jun, c-fos, and c-myc protooncogenes. However, our observation that exposure to a strong MF gradient induced c-Jun expression suggests that a strong MF gradient may have significant biological effects, particularly regarding processes related to an elevation of c-jun gene expression.


Subject(s)
Electromagnetic Fields , Gene Expression Regulation/radiation effects , Proto-Oncogene Proteins c-jun/metabolism , HL-60 Cells , Humans , Phosphorylation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Time Factors
20.
Bioelectromagnetics ; 23(5): 355-68, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12111756

ABSTRACT

An effect on the tumor promotion process, as represented by accelerated cell growth, has been indicated as one example of areas that demonstrate the possibility of biological effects of extremely-low frequency magnetic fields. We, therefore, exposed the five cell lines (HL-60, K-562, MCF-7, A-375, and H4) derived from human tumors to a magnetic field for 3 days to investigate the effects on cell growth. Prior to exposure or sham exposure, the cells were precultured for 2 days in low serum conditions. The number of growing cells was counted in a blind manner. To investigate the effect on the initial response of cell proliferation, two cell lines were synchronized in G1 phase by serum starvation and then exposed to a magnetic field for 18 h (H4 cells) or 24 h (MCF-7 cells), both with and without serum stimulation. The rate of DNA synthesis, taken as a measure of the cell proliferation, was determined by following the incorporation of [(3)H]-thymidine into the DNA. Three different magnetic field polarizations at both 50 and 60 Hz were used: linearly polarized (vertical); circularly polarized; and an elliptically polarized field. Magnetic field flux densities were set at 500, 100, 20 and 2 microT (rms) for the vertical field and at 500 microT (rms) for the rotating fields. No effect of magnetic field exposure was observed on either cell growth or the initial response of cell proliferation.


Subject(s)
Cell Division , Magnetics/adverse effects , Culture Media , HL-60 Cells , Humans , K562 Cells , Magnetics/instrumentation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...