Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(2)2023 01 11.
Article in English | MEDLINE | ID: mdl-36672213

ABSTRACT

Spheroids are expected to aid the establishment of an in vitro-based cell culture system that can realistically reproduce cellular dynamics in vivo. We developed a fluoropolymer scaffold with an extracellular matrix (ECM) dot array and confirmed the possibility of mass-producing spheroids with uniform dimensions. Controlling the quality of ECM dots is important as it ensures spheroid uniformity, but issues such as pattern deviation and ECM drying persist in the conventional microstamping method. In this study, these problems were overcome via ECM dot printing using a resin mask with dot-patterned holes. For dot diameters of φ 300 µm, 400 µm, and 600 µm, the average spheroid diameters of human iPS cells (hiPSCs) were φ 260.8 µm, 292.4 µm, and 330.7 µm, respectively. The standard deviation when each average was normalized to 100 was 14.1%. A high throughput of 89.9% for colony formation rate to the number of dots and 89.3% for spheroid collection rate was achieved. The cells proliferated on ECM dots, and the colonies could be naturally detached from the scaffold without the use of enzymes, so there was almost no stimulation of the cells. Thus, the undifferentiated nature of hiPSCs was maintained until day 4. Therefore, this method is expected to be useful in drug discovery and regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Spheroids, Cellular , Humans , Extracellular Matrix , Drug Discovery , Regenerative Medicine
2.
Data Brief ; 44: 108514, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36034642

ABSTRACT

Genomic DNA methylation is an epigenetic marker mediated by DNA methyltransferases (Dnmts); in vertebrates, it comprises of a maintenance DNA methyltransferase, Dnmt1, and two de novo DNA methyltransferases (Dnmt3a and Dnmt3b). In zebrafish, there are two homologs of the mammalian Dnmt3a: Dnmt3aa and Dnmt3ab. A knockout (KO) mutant of zebrafish dnmt3aa was generated using the CRISPR/Cas9 genome-editing system as a new model for DNA methylation research. Since zebrafish dnmt3aa KO mutants were viable and fertile, a maternal-zygotic dnmt3aa deficient mutant (MZdnmt3aa) was generated. We performed whole-genome bisulfite sequencing (WGBS) to reveal the DNA methylation profile using this mutant and identified genomic regions with altered CpG methylation as differentially methylated regions (DMRs) in this mutant compared to those in the wild-type fish. We provided novel raw and processed datasets using the MZdnmt3aa KO mutant, and the raw data of WGBS are available through the Gene Expression Omnibus (GEO), accession number GSE178690.

3.
Genes Genet Syst ; 97(3): 139-152, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35718462

ABSTRACT

CpG methylation of genomic DNA is a well-known repressive epigenetic marker in eukaryotic transcription, and DNA methylation of promoter regions is correlated with gene silencing. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions, including transcription termination sites (TTSs), during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we performed bioinformatics analysis using six pre-existing Dnmt-/- mouse cell datasets: four types of neurons (three Dnmt3a-/- and one Dnmt1-/- mutants) and two types of embryonic fibroblasts (MEFs) (Dnmt3a-/- and Dnmt3b-/- mutants). Combined analyses using methylome and transcriptome data revealed that read counts downstream of hypomethylated TTSs were increased in three types of neurons (two Dnmt3a-/- and one Dnmt1-/- mutants). Among these, an increase in chimeric transcripts downstream of the TTSs was observed in Dnmt3a-/- mature olfactory sensory neurons and Dnmt3a-/- agouti-related peptide (protein)-producing neurons, thereby indicating that read-through occurs in hypomethylated TTSs at specific gene loci in these two mutants. Conversely, in Dnmt3a-/- MEFs, we detected reductions in read counts downstream of hypomethylated TTSs. These results indicate that the hypomethylation of TTSs can both positively and negatively regulate transcription termination, dependent on Dnmt and cell types. This study is the first to identify the aberrant termination of transcription at specific gene loci with DNA hypomethylated TTSs attributable to Dnmt deficiency.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Mice , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Promoter Regions, Genetic , DNA , Transcription, Genetic , Epigenomics , DNA Methyltransferase 3A
SELECTION OF CITATIONS
SEARCH DETAIL
...