Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Chemistry ; 30(33): e202400915, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38616170

ABSTRACT

A new concept for the regioselective synthesis of Hamilton-receptor and cyanurate-functionalized oligo adducts of the fullerene C60 was developed. Based on an in-situ deprotection and click-post-functionalization approach with novel azido precursors, the corresponding fullerene hexakis-adducts with octahedral addition patterns and up to twelve Hamilton-receptor/cyanurate moieties surrounding the fullerene sphere were synthesized. The versatility of this approach was further demonstrated by the synthesis of Hamilton-receptor/cyanurate functionalized fullerene mono-adducts, which are not accessible by direct cyclopropanation. Several fullerene target compounds were purified by simple washing procedures of the solid crude reaction mixture without the need for chromatography. The resulting fullerene mono- and hexakis-adducts were fully characterized and their supramolecular properties were investigated by NMR-spectroscopy and isothermal titration calorimetry (ITC).

2.
Chemistry ; 30(11): e202303515, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38200652

ABSTRACT

We report on the synthesis and characterization of a family of three water-soluble bola-amphiphilic zinc-porphyrin-perylenebisimide triads containing oligo carboxylic-acid capped Newkome dendrons in the periphery. Variations of the perylenebisimide (PBI) core geometry and dendron size (G1 and G2 dendrons with 3- and 9-carboxylic acid groups respectively) allow for tuning the supramolecular aggregation behavior with respect to variation of the molecular architecture. The triads show good solubility in basic aqueous media and aggregation to supramolecular assemblies. Theoretical investigations at the DFT level of theory accompanied by electrochemical measurements unravel the geometric and electronic structure of the amphiphiles. UV/Vis and fluorescence titrations with varying amounts of THF demonstrate disaggregation.

3.
Chem Commun (Camb) ; 60(6): 734-737, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38115763

ABSTRACT

Two classes of photoactive compounds containing fluoroalkyl- and alkyl silver carboxylates were utilized for graphene laser writing, affording a set of patterned graphene architectures bearing various functionalities. The laser patterning of graphene is accomplished by using laser-triggered decomposition of silver carboxylates to generate radicals confined to the irradiated area for the selective binding of graphene.

4.
Chem Sci ; 14(40): 11096-11104, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37860652

ABSTRACT

Through comprehensive photo-assays, this study investigates the reaction coordinate governing the interconversion between quadricyclane (QC) and norbornadiene (NBD) upon photo-irradiation up to a wavelength of 550 nm. To harness this spectroscopic range for energy release, we link the NBD-core with a highly electron-accepting perylenediimide (PDI) with broad absorption, achieving strong electronic coupling between them. We detail the successful synthesis and present extensive DFT calculations to determine the amount of stored energy. By means of transient absorption spectroscopy, an oxidative electron transfer is observed during the QC-to-NBD isomerization following the initial PDI photoexcitation. This charge-separated state is key to triggering the back-isomerization with visible light excitation.

5.
Angew Chem Int Ed Engl ; 62(47): e202314183, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37815890

ABSTRACT

Three-dimensionally (3D) well-ordered and highly integrated graphene hybrid architectures are considered to be next-generation multifunctional graphene materials but still remain elusive. Here, we report the first realization of unprecedented 3D-patterned graphene nano-ensembles composed of a graphene monolayer, a tailor-made structured organophenyl layer, and three metal oxide films, providing the first example of such a hybrid nano-architecture. These spatially resolved and hierarchically structured quinary hybrids are generated via a two-dimensional (2D)-functionalization-mediated atomic layer deposition growth process, involving an initial lateral molecular programming of the graphene lattice via lithography-assisted 2D functionalization and a subsequent stepwise molecular assembly in these regions in the z-direction. Our breakthrough lays the foundation for the construction of emerging 3D-patterned graphene heterostructures.

6.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602805

ABSTRACT

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

7.
Chemistry ; 29(44): e202301061, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37199454

ABSTRACT

The synthesis and characterization of four dumbbell-shaped fullerene molecules connected by isosorbide and isomannide moieties is presented. Additionally, their electrochemical behavior and their ability to form complexes with [10]cycloparaphenylene ([10]CPP) were investigated. The cyclic voltammetry (CV) results of the fullerene dumbbells demonstrate a high electron affinity, indicating their strong interaction with electron-donating counterparts such as carbon nanorings, which possess complementary charge and shape properties. To study the thermodynamic and kinetic parameters of complexation, isothermal titration calorimetry (ITC) was employed. NMR titration experiments provided further insights into the binding stoichiometries. Two distinct approaches were utilized to create bridged structures: one based on cyclopropane and the other based on furan. Regardless of the type of linker used, all derivatives formed conventional 2 : 1 complexes denoted as [10]CPP2 ⊃C60derivative . However, the methano-dumbbell molecules exhibited distinct binding behavior, resulting in the formation of mono- and bis-pseudorotaxanes, as well as oligomers (polymers). The formation of linear polymers holds significant potential for applications in solar energy conversion processes.

8.
Angew Chem Int Ed Engl ; 62(22): e202219024, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36935352

ABSTRACT

We report on a controllable and specific functionalisation route for graphene field-effect transistors (GFETs) for the recognition of small physiologically active molecules. Key element is the noncovalent functionalisation of the graphene surface with perylene bisimide (PBI) molecules directly on the growth substrate. This Functional Layer Transfer enables the homogeneous self-assembly of PBI molecules on graphene, onto which antibodies are subsequently immobilised. The sensor surface was characterised by atomic force microscopy, Raman spectroscopy and electrical measurements, showing superior performance over conventional functionalisation after transfer. Specific sensing of small molecules was realised by monitoring the electrical property changes of functionalised GFET devices upon the application of methamphetamine and cortisol. The concentration dependent electrical response of our sensors was determined down to a concentration of 300 ng ml-1 for methamphetamine.


Subject(s)
Graphite , Graphite/chemistry , Transistors, Electronic , Biomarkers , Antibodies , Microscopy, Atomic Force
9.
Nanoscale ; 15(12): 5665-5670, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36896752

ABSTRACT

In this work, we compare for the first time the stability of [n]cycloparaphenylene ([n]CPP)-based host-guest complexes with Li+@C60 and C60 in the gas and the solution phase. Our gas-phase experiments reveal a significant increase in stability for the complexes featuring [9-12]CPP with Li+@C60. This increased interaction strength is also observed in solution. Isothermal titration calorimetry shows for the formation of [10]CPP⊃Li+@C60 a two orders of magnitude larger association constant than that for the C60 analog. Additionally, an increased binding entropy is observed. This study contributes to a better understanding of host-guest complexes between [n]CPPs and endohedral metallofullerenes at a molecular level, which is the prerequisite for future applications.

10.
Chemistry ; 29(25): e202203759, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36840687

ABSTRACT

Novel energy-storage solutions are necessary for the transition from fossil to renewable energy sources. Auspicious candidates are so-called molecular solar thermal (MOST) systems. In our study, we investigate the surface chemistry of a derivatized norbornadiene/quadricyclane molecule pair. By using suitable push-pull substituents, a bathochromic shift of the absorption onset is achieved, allowing a greater overlap with the solar spectrum. Specifically, the adsorption and thermally induced reactions of 2-carbethoxy-3-phenyl-norbornadiene/quadricyclane are assessed on Pt(111) and Ni(111) as model catalyst surfaces by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). Comparison of the respective XP spectra enables the distinction of the energy-rich molecule from its energy-lean counterpart and allows qualitative information on the adsorption motifs to be derived. Monitoring the quantitative cycloreversion between 140 and 230 K spectroscopically demonstrates the release of the stored energy to be successfully triggered on Pt(111). Heating to above 300 K leads to fragmentation of the molecular framework. On Ni(111), no conversion of the energy-rich compound takes place. The individual decomposition pathways of the two isomers begin at 160 and 180 K, respectively. Pronounced desorption of almost the entire surface coverage only occurs for the energy-lean molecule on Ni(111) above 280 K; this suggests weakly bound species. The correlation between adsorption motif and desorption behavior is important for applications of MOST systems in heterogeneously catalyzed processes.

11.
Chemistry ; 29(16): e202203734, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36507855

ABSTRACT

We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.

13.
ChemSusChem ; 15(24): e202201483, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36213958

ABSTRACT

Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time. The MOST systems phenyl-ethyl ester-NBD/QC (NBD1/QC1) and p-methoxyphenyl-ethyl ester-NBD/QC (NBD2/QC2) were investigated by in-situ photoelectrochemical infrared spectroscopy, voltammetry, and density functional theory modelling. For QC1, partial decomposition (40 %) was observed upon back-conversion and along with a voltammetric peak at 0.6 Vfc , which was assigned primarily to decomposition. The back-conversion of QC2, however, occurred without detectable side products, and the corresponding peak at 0.45 Vfc was weaker by a factor of 10. It was concluded that the electrochemical stability of a NBD/QC couple is easy tunable by simple structural changes. Furthermore, the charge input and, therefore, the current for the electrochemically triggered energy release is very low, which ensures a high overall efficiency of the MOST system.

14.
J Am Chem Soc ; 144(43): 19825-19831, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36256880

ABSTRACT

Covalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only. Careful structure analysis was performed by Raman spectroscopy and Kelvin probe force microscopy. In terms of the advantages of our newly established concept, including a simple/easy-to-operate patterning procedure, arbitrary pattern availability, and a high degree of addend binding, an easy access to tailor-designed Janus-functionalized graphene devices with spatially resolved functional entities can be envisaged.

15.
Chemphyschem ; 23(16): e202200552, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35980112

ABSTRACT

The front cover artwork is provided by the group of Prof. Dr. Christian Papp at Physical Chemistry II of FAU Erlangen-Nürnberg and FU Berlin. The image shows the isomerization reaction of the molecule pair 2,3-dicyano-norbornadiene/quadricyclane as potential molecular solar thermal (MOST) energy storage system. Read the full text of the Research Article at 10.1002/cphc.202200199.

16.
Chemistry ; 28(53): e202201446, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35776126

ABSTRACT

An unprecedented compound class of functional organic hybrids consisting of a photoswitchable norbornadiene building block and a redoxactive chromophore, namely naphthalene diimide, were designed and synthesized. Within these structures the capability of rylene chromophores to function as a redox active catalyst upon their photoexcitation was utilized to initiate the oxidative back-conversion of the in situ formed quadricyclane unit to its norbornadiene analogue. In this way successive photoexcitation at two different wavelengths enabled a controlled photoswitching between the two isomerical states of the hybrids. Beyond this prove of concept, the dependency of the reaction rate to the intramolecular distance of the two functional molecular building blocks as well as the concentration of the photoexcited sample was monitored. The experimental findings and interpretations were furthermore supported by quantum chemical investigations.

17.
Angew Chem Int Ed Engl ; 61(33): e202201169, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35647672

ABSTRACT

The sequential vertical polyfunctionalization of 2D addend-patterned graphene is still elusive. Here, we report a practical realization of this goal via a "molecular building blocks" approach, which is based on a combination of a lithography-assisted reductive functionalization approach and a post-functionalization step to sequentially and controllably link the molecular building blocks ethylpyridine, cis-dichlorobis(2,2'-bipyridyl)ruthenium, and triphenylphosphine (4-methylbenzenethiol, respectively) on selected lattice regions of a graphene matrix. The assembled 2D hetero-architectures are unambiguously characterized by various spectroscopic and microscopic measurements, revealing the stepwise stacking of the molecular building blocks on the graphene surface. Our method overcomes the current limitation of a one-layer-only binding to the graphene surface and opens the door for a vertical growth in the z-direction.

18.
Chemphyschem ; 23(16): e202200199, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35612821

ABSTRACT

Molecular solar thermal (MOST) systems are a promising approach for the introduction of sustainable energy storage solutions. We investigated the feasibility of the dicyano-substituted norbornadiene/quadricyclane molecule pair on Ni(111) for catalytic model studies. This derivatization is known to lead to a desired bathochromic shift of the absorption maximum of the parent compound. In our experiments further favorable properties were found: At low temperatures, both molecules adsorb intact without any dissociation. In situ temperature-programmed HR-XPS experiments reveal the conversion of (CN)2 -quadricyclane to (CN)2 -norbornadiene under energy release between 175 and 260 K. The absence of other surface species due to side reactions indicates full isomerization. Further heating leads to the decomposition of the molecular framework into smaller carbonaceous fragments above 290 K and finally to amorphous structures, carbide and nitride above 400 K. DFT calculations gave insights into the adsorption geometries. (CN)2 -norbornadiene is expected to interact stronger with the surface, with flat configurations being favorable. (CN)2 -quadricyclane exhibits smaller adsorption energies with negligible differences for flat and side-on geometries. Simulated XP spectra are in good agreement with experimental findings further supporting the specific spectroscopic fingerprints for both valence isomers.

19.
J Am Chem Soc ; 144(22): 9645-9650, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35617156

ABSTRACT

Efficiently assembling heterostructures with desired interface properties, stability, and facile patternability is challenging yet crucial to modern device fabrication. Here, we demonstrate an interface coupling concept to bottom-up construct covalently linked graphene/MoS2 heterostructures in a spatially defined manner. The covalent heterostructure domains are selectively created in analogy to the traditional printmaking technique, enabling graphic patterns at the bottom MoS2 layer to be precisely transferred to the top graphene layer. This bottom-up connection and transcription of chemical information is achieved simply via laser beam irradiation. Our approach opens up a new paradigm for heterostructure construction and integration. It enables the efficient generation and real-time visualization of spatially well-resolved covalent graphene/MoS2 heterostructures, facilitating further design and integration of patterned heterostructures into new generations of high-performance devices.

20.
Small ; 18(15): e2107513, 2022 04.
Article in English | MEDLINE | ID: mdl-35253355

ABSTRACT

Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.


Subject(s)
Nanoparticles , Silicon Dioxide , Aluminum Oxide , Humans , Nanoparticles/chemistry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...