Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 119(10): 1969-1980, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37315201

ABSTRACT

AIMS: Heart failure (HF) after myocardial infarction (MI) is a major cause of morbidity and mortality. We sought to investigate the functional importance of cardiac iron status after MI and the potential of pre-emptive iron supplementation in preventing cardiac iron deficiency (ID) and attenuating left ventricular (LV) remodelling. METHODS AND RESULTS: MI was induced in C57BL/6J male mice by left anterior descending coronary artery ligation. Cardiac iron status in the non-infarcted LV myocardium was dynamically regulated after MI: non-haem iron and ferritin increased at 4 weeks but decreased at 24 weeks after MI. Cardiac ID at 24 weeks was associated with reduced expression of iron-dependent electron transport chain (ETC) Complex I compared with sham-operated mice. Hepcidin expression in the non-infarcted LV myocardium was elevated at 4 weeks and suppressed at 24 weeks. Hepcidin suppression at 24 weeks was accompanied by more abundant expression of membrane-localized ferroportin, the iron exporter, in the non-infarcted LV myocardium. Notably, similarly dysregulated iron homeostasis was observed in LV myocardium from failing human hearts, which displayed lower iron content, reduced hepcidin expression, and increased membrane-bound ferroportin. Injecting ferric carboxymaltose (15 µg/g body weight) intravenously at 12, 16, and 20 weeks after MI preserved cardiac iron content and attenuated LV remodelling and dysfunction at 24 weeks compared with saline-injected mice. CONCLUSION: We demonstrate, for the first time, that dynamic changes in cardiac iron status after MI are associated with local hepcidin suppression, leading to cardiac ID long term after MI. Pre-emptive iron supplementation maintained cardiac iron content and attenuated adverse remodelling after MI. Our results identify the spontaneous development of cardiac ID as a novel disease mechanism and therapeutic target in post-infarction LV remodelling and HF.


Subject(s)
Heart Failure , Iron Deficiencies , Myocardial Infarction , Male , Mice , Humans , Animals , Hepcidins/metabolism , Hepcidins/therapeutic use , Iron/metabolism , Iron/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Heart Failure/metabolism , Dietary Supplements , Ventricular Remodeling
2.
Eur J Heart Fail ; 24(7): 1319-1322, 2022 07.
Article in English | MEDLINE | ID: mdl-35733299

ABSTRACT

Herein we report the case of a young man, admitted to the Department of Cardiology and Angiology at Hannover Medical School with shortness of breath and elevated troponin. Few weeks earlier the patient received the first dose of BioNTech's mRNA vaccine (Comirnaty, BNT162b2). After diagnostic work-up revealed giant cell myocarditis, the patient received immunosuppressive therapy. In the present context of myocarditis after mRNA vaccination we discuss this rare aetiology and the patient's treatment strategy in the light of current recommendations.


Subject(s)
BNT162 Vaccine , COVID-19 , Myocarditis , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Giant Cells , Humans , Male , Myocarditis/complications , Myocarditis/etiology , Vaccination/adverse effects
3.
Eur J Heart Fail ; 22(11): 2038-2046, 2020 11.
Article in English | MEDLINE | ID: mdl-32155309

ABSTRACT

AIMS: Low cardiac iron levels promote heart failure in experimental models. While cardiac iron concentration (CI) is decreased in patients with advanced heart failure with reduced ejection fraction (HFrEF), CI has never been measured in non-advanced HFrEF. We measured CI in left ventricular (LV) endomyocardial biopsies (EMB) from patients with non-advanced HFrEF and explored CI association with systemic iron status and disease severity. METHODS AND RESULTS: We enrolled 80 consecutive patients with non-ischaemic HFrEF with New York Heart Association class II or III symptoms and a median (interquartile range) LV ejection fraction of 25 (18-33)%. CI was 304 (262-373) µg/g dry tissue. CI was not related to immunohistological findings or the presence of cardiotropic viral genomes in EMBs and was not related to biomarkers of systemic iron status or anaemia. Patients with CI in the lowest quartile (CIQ1 ) had lower body mass indices and more often presented with heart failure histories longer than 6 months than patients in the upper three quartiles (CIQ2-4 ). CIQ1 patients had higher serum N-terminal pro-B-type natriuretic peptide levels than CIQ2-4 patients [3566 (1513-6412) vs. 1542 (526-2811) ng/L; P = 0.005]. CIQ1 patients also had greater LV end-diastolic (P = 0.001) and end-systolic diameter indices (P = 0.003) and higher LV end-diastolic pressures (P = 0.046) than CIQ2-4 patients. CONCLUSION: Low CI is associated with greater disease severity in patients with non-advanced non-ischaemic HFrEF. CI is unrelated to systemic iron homeostasis. The prognostic and therapeutic implications of CI measurements in EMBs should be further explored.


Subject(s)
Heart Failure , Iron , Biomarkers/metabolism , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Iron/metabolism , Myocardium/metabolism , Severity of Illness Index , Stroke Volume/physiology , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...