Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38903125

ABSTRACT

The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement: When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.

2.
J Immunol ; 209(2): 337-345, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35750337

ABSTRACT

African green monkeys (AGMs), Chlorocebus pygerythrus, are a natural host for a lentivirus related to HIV, SIV. SIV-infected AGMs rarely progress to AIDS despite robust viral replication. Though multiple mechanisms are involved, a primary component is the animals' ability to downregulate CD4 expression on mature CD4+ Th cells, rendering these cells resistant to infection by SIV. These CD8αα+ T cells retain functional characteristics of CD4+ Th cells while simultaneously acquiring abilities of cytotoxic CD8αß+ T cells. To determine mechanisms underlying functional differences between T cell subsets in AGMs, chromatin accessibility in purified populations was determined by assay for transposase-accessible chromatin sequencing. Differences in chromatin accessibility alone were sufficient to cluster cells by subtype, and accessibility at the CD4 locus reflected changes in CD4 expression. DNA methylation at the CD4 locus also correlated with inaccessible chromatin. By associating accessible regions with nearby genes, gene expression was found to correlate with accessibility changes. T cell and immune system activation pathways were identified when comparing regions that changed accessibility from CD4+ T cells to CD8αα+ T cells. Different transcription factor binding sites are revealed as chromatin accessibility changes, and these differences may elicit downstream changes in differentiation. This comprehensive description of the epigenetic landscape of AGM T cells identified genes and pathways that could have translational value in therapeutic approaches recapitulating the protective effects CD4 downregulation.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4-Positive T-Lymphocytes , Chlorocebus aethiops , Chromatin/metabolism , Down-Regulation , Epigenesis, Genetic , T-Lymphocyte Subsets , T-Lymphocytes, Helper-Inducer
3.
Microbiol Spectr ; 10(2): e0047822, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35297654

ABSTRACT

TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Capsid/metabolism , Kinetics , Macaca mulatta , Mutation , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics
5.
Viruses ; 13(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33801908

ABSTRACT

An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.


Subject(s)
Capsid/immunology , Immunity, Innate , RNA Viruses/immunology , RNA Viruses/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Antiviral Restriction Factors , Capsid/metabolism , Carrier Proteins/genetics , Flavivirus/immunology , Flavivirus/metabolism , Humans , RNA Viruses/classification , RNA Viruses/genetics , Retroviridae/immunology , Retroviridae/metabolism , Retroviridae Infections/immunology , Retroviridae Infections/prevention & control , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
6.
Commun Biol ; 4(1): 305, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686174

ABSTRACT

Pneumocystis jirovecii, the fungal agent of human Pneumocystis pneumonia, is closely related to macaque Pneumocystis. Little is known about other Pneumocystis species in distantly related mammals, none of which are capable of establishing infection in humans. The molecular basis of host specificity in Pneumocystis remains unknown as experiments are limited due to an inability to culture any species in vitro. To explore Pneumocystis evolutionary adaptations, we have sequenced the genomes of species infecting macaques, rabbits, dogs and rats and compared them to available genomes of species infecting humans, mice and rats. Complete whole genome sequence data enables analysis and robust phylogeny, identification of important genetic features of the host adaptation, and estimation of speciation timing relative to the rise of their mammalian hosts. Our data reveals insights into the evolution of P. jirovecii, the sole member of the genus able to infect humans.


Subject(s)
Evolution, Molecular , Fungal Proteins/genetics , Genome, Fungal , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/microbiology , Animals , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Humans , Phylogeny , Pneumocystis carinii/classification , Pneumocystis carinii/pathogenicity , Species Specificity
7.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33771926

ABSTRACT

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , CD4 Antigens/genetics , Catarrhini/genetics , Catarrhini/virology , Genetic Variation , HIV , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus , Alleles , Animals , CD4 Antigens/chemistry , Evolution, Molecular , Gene Products, env/chemistry , Humans , Protein Binding , Protein Domains
8.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33441342

ABSTRACT

Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.

9.
Viruses ; 12(10)2020 10 20.
Article in English | MEDLINE | ID: mdl-33092109

ABSTRACT

One of the most important steps in any viral lifecycle is the production of progeny virions. For retroviruses as well as other viruses, this step is a highly organized process that occurs with exquisite spatial and temporal specificity on the cellular plasma membrane. To facilitate this process, retroviruses encode short peptide motifs, or L domains, that hijack host factors to ensure completion of this critical step. One such cellular machinery targeted by viruses is known as the Endosomal Sorting Complex Required for Transport (ESCRTs). Typically responsible for vesicular trafficking within the cell, ESCRTs are co-opted by the retroviral Gag polyprotein to assist in viral particle assembly and release of infectious virions. This review in the Viruses Special Issue "The 11th International Retroviral Nucleocapsid and Assembly Symposium", details recent findings that shed light on the molecular details of how ESCRTs and the ESCRT adaptor protein ALIX, facilitate retroviral dissemination at sites of viral assembly.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Retroviridae , Virus Assembly/physiology , Virus Release/physiology , HIV-1/metabolism , Nucleocapsid/metabolism , Retroviridae/growth & development , Retroviridae/metabolism , Ribonucleoproteins/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism
10.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32841214

ABSTRACT

African green monkeys (AGMs) are natural hosts of SIV that postthymically downregulate CD4 to maintain a large population of CD4-CD8aa+ virus-resistant cells with Th functionality, which can result in AGMs becoming apparently cured of SIVagm infection. To understand the mechanisms of this process, we performed genome-wide transcriptional analysis on T cells induced to downregulate CD4 in vitro from AGMs and closely related patas monkeys and T cells that maintain CD4 expression from rhesus macaques. In T cells that downregulated CD4, pathway analysis revealed an atypical regulation of the DNA methylation machinery, which was reversible when pharmacologically targeted with 5-aza-2 deoxycytidine. This signature was driven largely by the dioxygenase TET3, which became downregulated with loss of CD4 expression. CpG motifs within the AGM CD4 promoter region became methylated during CD4 downregulation in vitro and were stably imprinted in AGM CD4-CD8aa+ T cells sorted directly ex vivo. These results suggest that AGMs use epigenetic mechanisms to durably silence the CD4 gene. Manipulation of these mechanisms could provide avenues for modulating SIV and HIV-1 entry receptor expression in hosts that become progressively infected with SIV, which could lead to novel therapeutic interventions aimed to reduce HIV viremia in vivo.


Subject(s)
CD4 Antigens/antagonists & inhibitors , CD4-Positive T-Lymphocytes/immunology , Epigenesis, Genetic , Gene Expression Regulation , Immunity, Innate/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/isolation & purification , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , Chlorocebus aethiops , DNA Methylation , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/genetics
11.
J Clin Invest ; 130(10): 5413-5424, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32663192

ABSTRACT

The development of broadly neutralizing antibodies (BNAbs) in HIV infection is a result of long-term coevolutionary interaction between viruses and antibodies. Understanding how this interaction promotes the increase of neutralization breadth during infection will improve the way in which AIDS vaccine strategies are designed. In this paper, we used SIV-infected rhesus macaques as a model to study the development of neutralization breadth by infecting rhesus macaques with longitudinal NAb escape variants and evaluating the kinetics of NAb response and viral evolution. We found that the infected macaques developed a stepwise NAb response against escape variants and increased neutralization breadth during the course of infection. Furthermore, the increase of neutralization breadth correlated with the duration of infection but was independent of properties of the inoculum, viral loads, or viral diversity during infection. These results imply that the duration of infection was the main factor driving the development of BNAbs. These data suggest the importance of novel immunization strategies to induce effective NAb response against HIV infection by mimicking long-term infection.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/biosynthesis , Genetic Variation , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Macaca mulatta , Models, Immunological , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Time Factors , Virus Replication/genetics , Virus Replication/immunology
12.
mBio ; 11(2)2020 04 21.
Article in English | MEDLINE | ID: mdl-32317323

ABSTRACT

Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM). CL757 causes a more protracted progression to disease, inducing SIVE in 50% of inoculated animals, with high cerebral spinal fluid viral loads, multinucleated giant cells (MNGCs), and perivascular lymphocytic cuffing in the central nervous system (CNS). This latter finding is reminiscent of human immunodeficiency virus (HIV) encephalitis in humans but not generally observed in rapid progressor animals with neuroAIDS. Here, we studied which subsets of cells within the CNS were targeted by CL757 in animals with neurological symptoms of SIVE. Immunohistochemistry of brain sections demonstrated infiltration of CD4+ T cells (CD4) and macrophages (MΦs) to the site of MNGCs. Moreover, an increase in mononuclear cells isolated from the brain tissues of RMs with SIVE correlated with increased cerebrospinal fluid (CSF) viral load. Subset analysis showed a specific increase in brain CD4+ memory T cells (Br-mCD4), brain-MΦs (Br-MΦs), and brain B cells (Br-B cells). Both Br-mCD4s and Br-MΦs harbored replication-competent viral DNA, as demonstrated by virus isolation by coculture. However, only in animals exhibiting SIVE/neuroAIDS was virus isolated from Br-MΦs. These findings support the use of CL757 to study the pathogenesis of AIDS viruses in the central nervous system and indicate a previously unanticipated role of CD4s cells as a potential reservoir in the brain.IMPORTANCE While the use of combination antiretroviral therapy effectively suppresses systemic viral replication in the body, neurocognitive disorders as a result of HIV infection of the central nervous system (CNS) remain a clinical problem. Therefore, the use of nonhuman primate models is necessary to study mechanisms of neuropathogenesis. The neurotropic, molecular clone SIVsm804E-CL757 (CL757) results in neuroAIDS in 50% of infected rhesus macaques approximately 1 year postinfection. Using CL757-infected macaques, we investigate disease progression by examining subsets of cells within the CNS that were targeted by CL757 and could potentially serve as viral reservoirs. By isolating mononuclear cells from the brains of SIV-infected rhesus macaques with and without encephalitis, we show that immune cells invade the neuroparenchyma and increase in number in the CNS in animals with SIV-induced encephalitis (SIVE). Of these cells, both brain macrophages and brain memory CD4+ T cells harbor replication-competent SIV DNA; however, only brain CD4+ T cells harbored SIV DNA in animals without SIVE. These findings support use of CL757 as an important model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions/immunology , Macrophages/immunology , Nervous System Diseases/etiology , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Biomarkers , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Central Nervous System/immunology , Central Nervous System/pathology , Central Nervous System/virology , Disease Models, Animal , Fluorescent Antibody Technique , Immunohistochemistry , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Macrophages/metabolism , Macrophages/virology , Nervous System Diseases/pathology , Neuroimmunomodulation , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load , Virulence
13.
mBio ; 11(2)2020 03 03.
Article in English | MEDLINE | ID: mdl-32127451

ABSTRACT

Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.IMPORTANCEPneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ∼$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.


Subject(s)
Evolution, Molecular , Fungal Proteins/genetics , Genetic Variation , Genome, Fungal , Membrane Glycoproteins/genetics , Phylogeny , Pneumocystis/genetics , Animals , Mammals/microbiology , Pneumocystis/classification , Rats , Sequence Homology, Nucleic Acid
14.
J Clin Invest ; 130(2): 789-798, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31661461

ABSTRACT

CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Lymph Nodes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Lymph Nodes/pathology , Macaca mulatta , Mesentery/immunology , Mesentery/pathology , Mucous Membrane , Organ Specificity/immunology , Simian Acquired Immunodeficiency Syndrome/pathology
15.
Front Psychiatry ; 10: 362, 2019.
Article in English | MEDLINE | ID: mdl-31178771

ABSTRACT

Purpose: Increased incidence of depression in HIV+ patients is associated with lower adherence to treatment and increased morbidity/mortality. One possible underlying pathophysiology is serotonergic dysfunction. In this study, we used an animal model of HIV, the SIV-infected macaque, to longitudinally image serotonin transporter (SERT) expression before and after inoculation, using 11C-DASB (SERT ligand) PET imaging. Methods: We infected seven rhesus macaques with a neurovirulent SIV strain and imaged them at baseline and multiple time points after inoculation (group A). Pyrosequencing methylation analysis of the SERT promoter region was performed. We also measured SERT mRNA/protein in brain single-cell suspensions from another group (group B) of SIV-infected animals (n = 13). Results: Despite some animals showing early fluctuations, 86% of our group A animals eventually showed a net increase in midbrain/thalamus binding potential (BPND) over the course of their disease (mean increased binding between last time point and baseline = 30.2% and 32.2%, respectively). Repeated-measures mixed-model analysis showed infection duration to be predictive of midbrain BPND (p = 0.039). Thalamic BPND was statistically significantly associated with multiple CSF cytokines (P < 0.05). There was higher SERT protein levels in the second group (group B) of SIV-infected animals with SIV encephalitis (SIVE) compared to those without SIVE (p = 0.014). There were no longitudinal changes in SERT gene promoter region percentage methylation between baselines and last time points in group A animals. Conclusion: Upregulated SERT leading to lower synaptic levels of serotonin is a possible mechanism of depression in HIV+ patients, and extrapolating our conclusions from SIV to HIV should be sought using translational human studies.

16.
Cell Rep ; 27(11): 3269-3283.e6, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189110

ABSTRACT

Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.


Subject(s)
Flavivirus Infections/metabolism , Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Antiviral Restriction Factors , Cats , Chlorocebus aethiops , Dendritic Cells/metabolism , Dendritic Cells/virology , Flavivirus/pathogenicity , Flavivirus/physiology , Flavivirus Infections/virology , HEK293 Cells , Humans , Protein Binding , Proteolysis , Substrate Specificity , Ubiquitination , Vero Cells
17.
mBio ; 10(3)2019 05 28.
Article in English | MEDLINE | ID: mdl-31138753

ABSTRACT

The exact cause of neurocognitive dysfunction in HIV-positive patients despite successful control of the infection in the periphery is not completely understood. One suggested mechanism is a vicious cycle of microglial activation and release of proinflammatory chemokines/cytokines that eventually leads to neuronal loss and dysfunction. However, the exact role of microglial activation in the earliest stages of the infection with high cerebrospinal fluid (CSF) viral loads (VL) is unclear. In this study, we imaged the translocator protein (TSPO), a mitochondrial membrane receptor known to be upregulated in activated microglia and macrophages, in rhesus macaques before and multiple times after inoculation with a neurotropic simian immunodeficiency virus (SIV) strain (SIVsm804E), using 18F-DPA714 positron emission tomography (PET). The whole-brain standardized uptake values of TSPO at equilibrium reflecting total binding (SUVT) and binding potentials (BPND) were calculated and correlated with CSF and serum markers of disease, and a corresponding postmortem immunostaining analysis was also performed. SUVT was found to be inversely correlated with both CSF VL and monocyte chemoattractant protein 1 (MCP-1) levels. In SIV-infected macaques with very high CSF VL at necropsy (>106 copies/ml), we found decreased TSPO binding by PET, and this was supported by immunostaining which showed glial and neuronal apoptosis rather than microglial activation. On the other hand, with only moderately elevated CSF VL (∼104 copies/ml), we found increased TSPO binding as well as focal and diffuse microglial activation on immunostaining. Our results in the SIV-infected macaque model provide insights into the relationship between HIV neuropathology and CSF VL at various stages of the disease.IMPORTANCE Neurological and cognitive problems are a common complication of HIV infection and are prevalent even in treated individuals. Although the molecular processes underlying brain involvement with HIV are not completely understood, inflammation is suspected to play a significant role. Our work presents an in vivo assessment of neuroinflammation in an animal model of HIV, the simian immunodeficiency virus (SIV)-infected rhesus macaque. Using positron emission tomography (PET) imaging, we identified changes in brain inflammation after inoculation with SIV over time. Interestingly, we found decreased binding of the PET ligand in the presence of very high cerebrospinal fluid (CSF) viral loads. These findings were supported by immunostaining which showed marked glial loss instead of inflammation. This study provides insight into glial and neuronal changes associated with very high CSF viral load and could reflect similar changes occurring in HIV-infected patients.


Subject(s)
Brain/pathology , Inflammation/virology , Simian Acquired Immunodeficiency Syndrome/cerebrospinal fluid , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load , Animals , Brain/immunology , Brain/virology , Disease Models, Animal , Female , HIV Infections/complications , HIV Infections/physiopathology , Inflammation/pathology , Macaca mulatta , Male , Neuroglia/pathology , Neuroglia/virology , Positron-Emission Tomography , Simian Immunodeficiency Virus
18.
J Virol ; 92(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29793957

ABSTRACT

We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge.IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Gene Products, env , Immunity, Humoral , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Vaccines, DNA , Adjuvants, Immunologic/pharmacology , Amino Acid Substitution , Animals , Gene Products, env/genetics , Gene Products, env/immunology , Gene Products, env/pharmacology , Immunization , Macaca , Mutation, Missense , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , SAIDS Vaccines/pharmacology , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
19.
mBio ; 9(3)2018 05 08.
Article in English | MEDLINE | ID: mdl-29739910

ABSTRACT

Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals.IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis, a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens.


Subject(s)
Pneumocystis/genetics , Pneumocystis/isolation & purification , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/veterinary , Rodent Diseases/microbiology , Animals , Genetic Variation , Genomics , Humans , Mice , Phylogeny , Pneumocystis/classification , Rats , Rats, Sprague-Dawley , Recombination, Genetic
20.
J Virol ; 92(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29142124

ABSTRACT

An incomplete understanding of native human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope glycoproteins (Envs) impedes the development of structural models of Env and vaccine design. This shortcoming is due in part to the low number of Env trimers on virus particles. For SIV, this low expression level can be counteracted by truncating the cytoplasmic tail (CT) of Env. CT truncation has been shown to increase Env incorporation into the virion and is commonly used in vaccine and imaging studies, but its effects on viral antigenicity have not been fully elucidated. To study the effects of a CT truncation of Env in viruses in similar genetic contexts, we introduced stop codons into the CT of a SIVsmE660 molecular clone and two neutralizing antibody (NAb) escape variants. These viruses shared 98% sequence identity in Env but were characterized as either tier 1 (sensitive to neutralization), tier 2 (moderately resistant to neutralization), or tier 3 (resistant to neutralization). However, the introduction of premature stop codons in Env at position Q741/Q742 converted all three transfection-derived viruses to a tier 3-like phenotype, and these viruses were uniformly resistant to neutralization by sera from infected macaques and monoclonal antibodies (MAbs). These changes in neutralization sensitivity were not accompanied by an increase in either the virion Env content of infection-derived viruses or the infectivity of transfection-derived viruses in human cells, suggesting that CT mutations may result in global changes to the Env conformation. Our results demonstrate that some CT truncations can affect viral antigenicity and, as such, may not be suitable surrogate models of native HIV/SIV Env.IMPORTANCE Modifications to the SIV envelope protein (Env) are commonly used in structural and vaccine studies to stabilize and increase the expression of Env, often without consideration of effects on antigenicity. One such widespread modification is the truncation of the Env C-terminal tail. Here, we studied the effects of a particular cytoplasmic tail truncation in three SIVsm strains that have highly similar Env sequences but exhibit different sensitivities to neutralizing antibodies. After truncation of the Env CT, these viruses were all very resistant to neutralization by sera from infected macaques and monoclonal antibodies. The viruses with a truncated Env CT also did not exhibit the desired and typical increase in Env expression. These results underscore the importance of carefully evaluating the use of truncated Env as a model in HIV/SIV vaccine and imaging studies and of the continued need to find better models of native Env that contain fewer modifications.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Codon, Terminator/genetics , Membrane Glycoproteins/genetics , Retroviridae Proteins/genetics , Simian Immunodeficiency Virus/genetics , Animals , Cell Line , Genes, env , Humans , Macaca mulatta , Neutralization Tests , Simian Immunodeficiency Virus/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...