Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 21(1): 145, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180079

ABSTRACT

BACKGROUND: Generation and regulation (control) of linear and angular momentum is a challenge during turning while walking which may be exacerbated by age-related changes. In healthy older adults, little is known about how momentum is controlled during turns, especially within each phase of gait. Each phase of gait affords unique mechanical contexts to control momenta and regulate balance. In healthy young adults, we found that the transverse-plane linear and angular momenta generation strategies observed within specific phases of gait during straight-line gait were also used during turns. Therefore, in this study, we investigated whether healthy older adults shared similar momentum control strategies specific to each gait phase during straight-line gait and turns. METHODS: Nine healthy older adults completed straight-line gait and 90° leftward walking turns. We compared the change in transverse-plane whole-body linear and angular momentum across gait phases (left and right single and double support). We also compared the average leftward force and transverse-plane moment across gait phases. RESULTS: We found that leftward linear momentum was generated most during right single support in straight-line gait and leftward turns. However, in contrast to straight-line gait, during leftward turns, average leftward force was applied across gait phases, with left single support generating significantly less leftward average force than other gait phases. Leftward angular momentum generation and average moment were greatest during left double support in both tasks. We observed some within-participant results that diverged from the group statistical findings, illustrating that although they are common, these momenta control strategies are not necessary. CONCLUSIONS: Older adults generated transverse-plane linear and angular momentum during consistent phases of gait during straight-line gait and 90° turns, potentially indicating a shared control strategy. Understanding momentum control within each phase of gait can help design more specific targets in gait and balance training interventions.


Subject(s)
Gait , Walking , Humans , Gait/physiology , Aged , Female , Male , Biomechanical Phenomena , Walking/physiology , Postural Balance/physiology , Aging/physiology , Aged, 80 and over
2.
Pharmacol Biochem Behav ; 125: 1-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25109273

ABSTRACT

The mean age of first voluntary tobacco inhalation is 12.3 years (DiFranza et al., 2004). 60% of smokers start smoking before the age of 14 and 90% are dependent before reaching the age of 19. Females are typically more sensitive to nicotine than males yet few studies examine the effects of nicotine on the reward systems in pre-adolescent female subjects. This study utilized the single trial conditioned place preference (CPP) test in very young (postnatal day 25-27) rats of both sexes. Latent effects on anxiety and amphetamine response were determined 5 and 7 days following a second nicotine exposure. Results show that 0.05 mg/kg nicotine induced CPP in females following a single trial while both sexes showed CPP following the 0.5 mg/kg dose. Five days later, rats dosed with 0.05 mg/kg show increased time on the open arm of the elevated plus maze, an anxiolytic response. While baseline activity was increased in nicotine-exposed males 7 days following dosing, amphetamine response was not affected by the treatments in either sex. Therefore, our data suggest that young females are more sensitive to nicotine reward than males supporting a heightened sensitivity of the mesolimbic dopamine system in very young females. However, alterations in baseline activity were only seen in males suggesting that different components of the system are affected by nicotine in each sex. An anxiolytic response to nicotine 5 days after dosing may suggest that this very young age group is uniquely affected by this very low nicotine dose. Clearly, nicotine has substantial acute and lasting effects during pre-adolescence at doses substantially lower than seen at older ages as reported by others. These effects, which could potentially result from cigarette or e-cigarette smoking by 11-12 year old children , focus attention on the vulnerability of this age group to nicotine.


Subject(s)
Conditioning, Psychological/drug effects , Ganglionic Stimulants/pharmacology , Nicotine/pharmacology , Spatial Behavior/drug effects , Age Factors , Amphetamine/pharmacology , Animals , Central Nervous System Stimulants/pharmacology , Dose-Response Relationship, Drug , Female , Male , Maze Learning/drug effects , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL