Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 90(11): 3889-97, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22665662

ABSTRACT

Ruminants are known to be able to very effectively recycle urinary urea and reuse it as a source of N for ruminal microbes. It is presumed that urea recycling is accomplished by specialized urea transporters (UT) which are localized in the kidney. This could be especially important in times of increased N requirement, such as during growth or during reduced dietary N intake. The aim of our study was to characterize and to localize UT in the goat (capra hircus) kidney and to investigate its response to reduced dietary N intake in growing goats. Therefore, 12 growing, male goats were fed either a diet containing high (17% CP in complete diet) or low (9% CP in complete diet) N content for 6 wk. After harvesting, blood and kidney samples were taken and analyzed. The mRNA of the different UT isoforms, UT-A1, UT-A2 and UT-B, were detected semiquantitatively in renal tissue by Northern blot analysis. For UT-A2 and UT-B, no statistically significant effect of dietary N restriction on renal mRNA expression could be detected (UT-A2: P = 0.26, UT-B: P = 0.07). However, renal mRNA abundance of UT-A1 significantly increased in the kidney of low-N-fed goats (P = 0.01). Furthermore, protein amounts of UT-B were verified by western blotting; and the localization of UT-A2 and UT-B protein was demonstrated by immunohistochemistry. No significant differences in protein amounts of UT-B could be observed comparing the 2 feeding groups (P = 0.78). The UT-B was localized in renal medulla and papilla, whereas UT-A2 was only found in renal medulla. In addition, comparison of UT-A and UT-BAA sequences of monogastric animals and ruminants showed a high degree of homology, indicating a similar function of the transporters among these species. In summary, we conclude that in ruminants, urea reabsorption in the kidney is most likely increased in response to a low-N diet via an upregulation of UT-A1 mRNA expression. Hypothetically, the reabsorbed urea can then be returned to the rumen via the bloodstream and thus be reused as a source of N for protein synthesis of ruminal microbial community.


Subject(s)
Diet/veterinary , Gene Expression Regulation/drug effects , Goats/metabolism , Kidney/metabolism , Membrane Transport Proteins/metabolism , Nitrogen/pharmacology , Amino Acid Sequence , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Blotting, Northern , Blotting, Western , Male , Membrane Transport Proteins/genetics , Molecular Sequence Data , Urea Transporters
SELECTION OF CITATIONS
SEARCH DETAIL
...