Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 189(3): 251-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25613203

ABSTRACT

While relatively simple biologically, bacteriophages are sophisticated biochemical machines that execute a precise sequence of events during virus assembly, DNA packaging, and ejection. These stages of the viral life cycle require intricate coordination of viral components whose structures are being revealed by single molecule experiments and high resolution (cryo-electron microscopy) reconstructions. For example, during packaging, bacteriophages employ some of the strongest known molecular motors to package DNA against increasing pressure within the viral capsid shell. Located upstream of the motor is an elaborate portal system through which DNA is threaded. A high resolution reconstruction of the portal system for bacteriophage ϕ29 reveals that DNA buckles inside a small cavity under large compressive forces. In this study, we demonstrate that DNA can also buckle in other bacteriophages including T7 and P22. Using a computational rod model for DNA, we demonstrate that a DNA buckle can initiate and grow within the small confines of a cavity under biologically-attainable force levels. The forces of DNA-cavity contact and DNA-DNA electrostatic repulsion ultimately limit cavity filling. Despite conforming to very different cavity geometries, the buckled DNA within T7 and P22 exhibits near equal volumetric energy density (∼1kT/nm(3)) and energetic cost of packaging (∼22kT). We hypothesize that a DNA buckle creates large forces on the cavity interior to signal the conformational changes to end packaging. In addition, a DNA buckle may help retain the genome prior to tail assembly through significantly increased contact area with the portal.


Subject(s)
Bacteriophage P22/genetics , Bacteriophage T7/genetics , DNA, Viral/chemistry , Bacteriophage P22/physiology , Bacteriophage T7/physiology , DNA/chemistry , DNA, Viral/metabolism , Models, Molecular , Nucleic Acid Conformation
2.
J Phys Chem B ; 118(38): 11028-36, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25155114

ABSTRACT

The genetic material in living cells is organized into complex structures in which DNA is subjected to substantial contortions. Here we investigate the difference in structure, dynamics, and flexibility between two topological states of a short (107 base pair) DNA sequence in a linear form and a covalently closed, tightly curved circular DNA form. By employing a combination of all-atom molecular dynamics (MD) simulations and elastic rod modeling of DNA, which allows capturing microscopic details while monitoring the global dynamics, we demonstrate that in the highly curved regime the microscopic flexibility of the DNA drastically increases due to the local mobility of the duplex. By analyzing vibrational entropy and Lipari-Szabo NMR order parameters from the simulation data, we propose a novel model for the thermodynamic stability of high-curvature DNA states based on vibrational untightening of the duplex. This novel view of DNA bending provides a fundamental explanation that bridges the gap between classical models of DNA and experimental studies on DNA cyclization, which so far have been in substantial disagreement.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation
3.
Biophys J ; 104(9): 2058-67, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23663849

ABSTRACT

In the bacteriophage ϕ29, DNA is packed into a preassembled capsid from which it ejects under high pressure. A recent cryo-EM reconstruction of ϕ29 revealed a compact toroidal DNA structure (30-40 basepairs) lodged within the exit cavity formed by the connector-lower collar protein complex. Using multiscale models, we compute a detailed structural ensemble of intriguing DNA toroids of various lengths, all highly compatible with experimental observations. In particular, coarse-grained (elastic rod) and atomistic (molecular dynamics) models predict the formation of DNA toroids under significant compression, a largely unexplored state of DNA. Model predictions confirm that a biologically attainable compressive force of 25 pN sustains the toroid and yields DNA electron density maps highly consistent with the experimental reconstruction. The subsequent simulation of dynamic toroid ejection reveals large reactions on the connector that may signal genome release.


Subject(s)
Bacillus Phages/chemistry , DNA, Viral/chemistry , Molecular Dynamics Simulation , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation
4.
Biophys J ; 101(3): 718-26, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21806940

ABSTRACT

Protein-mediated DNA looping, such as that induced by the lactose repressor (LacI) of Escherichia coli, is a well-known gene regulation mechanism. Although researchers have given considerable attention to DNA looping by LacI, many unanswered questions about this mechanism, including the role of protein flexibility, remain. Recent single-molecule observations suggest that the two DNA-binding domains of LacI are capable of splaying open about the tetramerization domain into an extended conformation. We hypothesized that if recent experiments were able to reveal the extended conformation, it is possible that such structures occurred in previous studies as well. In this study, we tested our hypothesis by reevaluating two classic in vitro binding assays using a computational rod model of DNA. The experiments and computations evaluate the looping of both linear DNA and supercoiled DNA minicircles over a broad range of DNA interoperator lengths. The computed energetic minima align well with the experimentally observed interoperator length for optimal loop stability. Of equal importance, the model reveals that the most stable loops for linear DNA occur when LacI adopts the extended conformation. In contrast, for DNA minicircles, optimal stability may arise from either the closed or the extended protein conformation depending on the degree of supercoiling and the interoperator length.


Subject(s)
DNA/chemistry , DNA/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Lac Repressors/chemistry , Lac Repressors/metabolism , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...