Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 9(2): 211823, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35223066

ABSTRACT

We propose a probabilistic model discovery method for identifying ordinary differential equations governing the dynamics of observed multivariate data. Our method is based on the sparse identification of nonlinear dynamics (SINDy) framework, where models are expressed as sparse linear combinations of pre-specified candidate functions. Promoting parsimony through sparsity leads to interpretable models that generalize to unknown data. Instead of targeting point estimates of the SINDy coefficients, we estimate these coefficients via sparse Bayesian inference. The resulting method, uncertainty quantification SINDy (UQ-SINDy), quantifies not only the uncertainty in the values of the SINDy coefficients due to observation errors and limited data, but also the probability of inclusion of each candidate function in the linear combination. UQ-SINDy promotes robustness against observation noise and limited data, interpretability (in terms of model selection and inclusion probabilities) and generalization capacity for out-of-sample forecast. Sparse inference for UQ-SINDy employs Markov chain Monte Carlo, and we explore two sparsifying priors: the spike and slab prior, and the regularized horseshoe prior. UQ-SINDy is shown to discover accurate models in the presence of noise and with orders-of-magnitude less data than current model discovery methods, thus providing a transformative method for real-world applications which have limited data.

2.
Proc Math Phys Eng Sci ; 477(2254): 20210097, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35153585

ABSTRACT

Time-delay embedding and dimensionality reduction are powerful techniques for discovering effective coordinate systems to represent the dynamics of physical systems. Recently, it has been shown that models identified by dynamic mode decomposition on time-delay coordinates provide linear representations of strongly nonlinear systems, in the so-called Hankel alternative view of Koopman (HAVOK) approach. Curiously, the resulting linear model has a matrix representation that is approximately antisymmetric and tridiagonal; for chaotic systems, there is an additional forcing term in the last component. In this paper, we establish a new theoretical connection between HAVOK and the Frenet-Serret frame from differential geometry, and also develop an improved algorithm to identify more stable and accurate models from less data. In particular, we show that the sub- and super-diagonal entries of the linear model correspond to the intrinsic curvatures in the Frenet-Serret frame. Based on this connection, we modify the algorithm to promote this antisymmetric structure, even in the noisy, low-data limit. We demonstrate this improved modelling procedure on data from several nonlinear synthetic and real-world examples.

SELECTION OF CITATIONS
SEARCH DETAIL
...