Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1862(7): 1626-1634, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29649511

ABSTRACT

BACKGROUND: A number of compounds, including ascorbic acid, catecholamines, flavonoids, p-diphenols and hydrazine derivatives have been reported to interfere with peroxidase-based medical diagnostic tests (Trinder reaction) but the mechanisms of these effects have not been fully elucidated. METHODS: Reactions of bovine myeloperoxidase with o-dianisidine, bovine lactoperoxidase with ABTS and horseradish peroxidase with 4-aminoantipyrine/phenol in the presence of carbidopa, an anti-Parkinsonian drug, and other catechols, including l-dopa, were monitored spectrophotometrically and by measuring hydrogen peroxide consumption. RESULTS: Chromophore formation in all three enzyme/substrate systems was blocked in the presence of carbidopa and other catechols. However, the rates of hydrogen peroxide consumption were not much affected. Irreversible enzyme inhibition was also insignificant. CONCLUSIONS: Tested compounds reduced the oxidation products or intermediates of model substrates thus preventing chromophore formation. This interference may affect interpretation of results of diagnostic tests in samples from patients with Parkinson's disease treated with carbidopa and l-dopa. GENERAL SIGNIFICANCE: This mechanism allows prediction of interference in peroxidase-based diagnostic tests for other compounds, including drugs and natural products.


Subject(s)
Carbidopa/pharmacology , Peroxidases/metabolism , Animals , Catalysis , Catechols/pharmacology , Cattle , Chromogenic Compounds , Horseradish Peroxidase/antagonists & inhibitors , Horseradish Peroxidase/metabolism , Humans , Hydrogen Peroxide/metabolism , Lactoperoxidase/antagonists & inhibitors , Lactoperoxidase/metabolism , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Oxidation-Reduction , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...