Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Membr Biol ; 32(5-8): 139-55, 2015.
Article in English | MEDLINE | ID: mdl-26906947

ABSTRACT

Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-ß-D-glucoside (ß-OG), n-dodecyl-ß-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.


Subject(s)
Detergents/chemistry , Deuterium/chemistry , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Animals , Humans
2.
J Labelled Comp Radiopharm ; 57(14): 737-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25491565

ABSTRACT

This work reports the first synthesis of uniformly deuterated n-dodecyl-ß-D-maltoside (d39-DDM). DDM is a mild non-ionic detergent often used in the extraction and purification of membrane proteins and for solubilizing them in experimental studies of their structure, dynamics and binding of ligands. We required d39-DDM for solubilizing large α-helical membrane proteins in samples for [(15)N-(1)H]TROSY (transverse relaxation-optimized spectroscopy) NMR experiments to achieve the highest sensitivity and best resolved spectra possible. Our synthesis of d39-DDM used d7-D-glucose and d25-n-dodecanol to introduce deuterium labelling into both the maltoside and dodecyl moieties, respectively. Two glucose molecules, one converted to a glycosyl acceptor with a free C4 hydroxyl group and one converted to a glycosyl donor substituted at C1 with a bromine in the α-configuration, were coupled together with an α(1 → 4) glycosidic bond to give maltose, which was then coupled with n-dodecanol by its substitution of a C1 bromine in the α-configuration to give DDM. (1)H NMR spectra were used to confirm a high level of deuteration in the synthesized d39-DDM and to demonstrate its use in eliminating interfering signals from TROSY NMR spectra of a 52-kDa sugar transport protein solubilized in DDM.


Subject(s)
Calcium-Binding Proteins/chemistry , Detergents/chemistry , Detergents/chemical synthesis , Deuterium/chemistry , Glucosides/chemistry , Glucosides/chemical synthesis , Monosaccharide Transport Proteins/chemistry , Periplasmic Binding Proteins/chemistry , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Molecular Weight , Solubility
3.
J Am Chem Soc ; 132(42): 14857-65, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-20883017

ABSTRACT

Notch receptors are cell surface glycoproteins that play key roles in a number of developmental cascades in metazoa. The extracellular domains of Notch-1 receptors are composed of 36 tandem epidermal growth factor (EGF)-like repeats, many of which are modified at highly conserved consensus sites by an unusual form of O-glycan, with O-fucose. The O-fucose residues on certain EGF repeats may be elongated. In mammalian cells this can be a tetrasaccharide, Siaα2,3Galß1,4GlcNAcß1,3Fucα1→. This elongation process is initiated by the action of O-fucose-specific ß1,3 N-acetylglucosaminyltransferases of the Fringe family. There is evidence that the addition of GlcNAc by Fringe serves as an essential modulator of the interaction of Notch with its ligands and the triggering of activation. Here we describe the efficient synthesis, folding, and structural characterization of EGF repeat 12 (EGF 12) of a mouse Notch-1 receptor bearing different O-fucose glycan chains. We demonstrate that the three disulfide bonds, Cys(456)-Cys(467) (C1-C3), Cys(461)-Cys(476) (C2-C4), and Cys(478)-Cys(487) (C5-C6) were correctly formed in the nonglycosylated as well as the O-fucosylated forms of EGF 12. Three-dimensional structural studies by NMR reveal that the methyl group of fucose is in close contact with ILe(475), Met(477), Pro(478) residues and this stabilizes the conformation of the antiparallel ß-sheet of EGF 12. The addition of the GlcNAc residue on O-fucosylated EGF 12 induces a significant conformational change in the adjacent tripeptide sequence, Gln(462)Asn(463)Asp(464), which is a motif involved in the natural, enzymatic O-fucosylation at the conserved site (Cys(461)X(4)Ser/ThrCys(467)).


Subject(s)
ErbB Receptors/chemistry , Fucose/chemistry , Receptor, Notch1/chemistry , Amino Acid Sequence , Animals , Carbohydrate Sequence , Chromatography, High Pressure Liquid , Glycosylation , Mice , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...