Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 23(7): 1293-304, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26027732

ABSTRACT

Discerning the structural building blocks of macromolecules is essential for understanding their folding and function. For a new generation of modified nucleic acid ligands (called slow off-rate modified aptamers or SOMAmers), we previously observed essential functions of hydrophobic aromatic side chains in the context of well-known nucleic acid motifs. Here we report a 2.45-Å resolution crystal structure of a SOMAmer complexed with nerve growth factor that lacks any known nucleic acid motifs, instead adopting a configuration akin to a triangular prism. The SOMAmer utilizes extensive hydrophobic stacking interactions, non-canonical base pairing and irregular purine glycosidic bond angles to adopt a completely non-helical, compact S-shaped structure. Aromatic side chains contribute to folding by creating an unprecedented intercalating zipper-like motif and a prominent hydrophobic core. The structure provides compelling rationale for potent inhibitory activity of the SOMAmer and adds entirely novel motifs to the repertoire of structural elements uniquely available to SOMAmers.


Subject(s)
DNA/chemistry , Nerve Growth Factor/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Nerve Growth Factor/physiology , Protein Binding , Protein Structure, Secondary , SELEX Aptamer Technique
2.
J Hum Genet ; 48(4): 177-82, 2003.
Article in English | MEDLINE | ID: mdl-12730720

ABSTRACT

We have performed a comprehensive analysis of gene-expression profiles in human articular cartilage (hyaline cartilage) and meniscus (fibrocartilage) by means of a cDNA microarray consisting of 23,040 human genes. Comparing the profiles of the two types of cartilage with those of 29 other normal human tissues identified 24 genes that were specifically expressed in both cartilaginous tissues; these genes might be involved in maintaining phenotypes common to cartilage. We also compared the cartilage profiles with gene expression in human mesenchymal stem cells (hMSC), and detected 22 genes that were differentially expressed in cells representing the two cartilaginous lineages, 11 specific to each type, which could serve as markers for predicting the direction of chondrocyte differentiation. Our data should also provide useful information about regeneration of cartilage, especially in support of efforts to identify cartilage-specific molecules as potential agents for therapeutic approaches to joint repair.


Subject(s)
Cartilage, Articular/metabolism , Cartilage/metabolism , Gene Expression Profiling , Knee Joint/metabolism , Biomarkers/analysis , Humans , Oligonucleotide Array Sequence Analysis , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Scleroproteins/genetics
3.
Am J Hum Genet ; 72(1): 73-82, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12471561

ABSTRACT

Through cDNA microarray analysis of gene expression in human cochlea and vestibule, we detected strong expression of mu-crystallin (CRYM; also known as "NADP-regulated thyroid hormone-binding protein") only in these inner-ear tissues. In a subsequent search for mutations of CRYM, among 192 patients with nonsyndromic deafness, we identified two mutations at the C-terminus; one was a de novo change (X315Y) in a patient with unaffected parents, and the other was a missense mutation (K314T) that segregated dominantly in the proband's family. When the mutated proteins were expressed in COS-7 cells, their subcellular localizations were different from that of the normal protein: the X315Y mutant showed vacuolated distribution in the cytoplasm, and the K314T mutant localized in perinuclear areas, whereas normal protein was distributed homogeneously in the cytoplasm. Aberrant intracellular localization of the mutated proteins might cause dysfunction of the CRYM product and result in hearing impairment. In situ hybridization analysis using mouse tissues indicated its expression in the lateral region of the spiral ligament and the fibrocytes of the spiral limbus, implying its possible involvement in the potassium-ion recycling system. Our results strongly implicate CRYM in normal auditory function and identify it as one of the genes that can be responsible for nonsyndromic deafness.


Subject(s)
Cochlea/metabolism , Crystallins/genetics , Deafness/genetics , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Vestibule, Labyrinth/metabolism , Amino Acid Sequence , Animals , Base Sequence , COS Cells , Cytoplasm/metabolism , DNA Mutational Analysis , Female , Humans , In Situ Hybridization , Male , Molecular Sequence Data , Mutation/genetics , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , mu-Crystallins
4.
DNA Res ; 9(2): 35-45, 2002 Apr 30.
Article in English | MEDLINE | ID: mdl-12056413

ABSTRACT

We have performed a comprehensive analysis of the expression profiles in 25 adult and 4 fetal human tissues by means of a cDNA microarray consisting of 23,040 human genes. This study revealed a number of genes that were expressed specifically in each of those tissues. Among the 29 tissues examined, 4,080 genes were highly expressed (at least a five-fold expression ratio) in one or only a few tissues and 1,163 of those were expressed exclusively (more than a ten-fold higher expression ratio) in a particular tissue. Expression of some of the genes in the latter category was confirmed by northern analysis. A hierarchical clustering analysis of gene-expression profiles in nerve tissues (adult brain, fetal brain, and spinal cord), lymphoid tissues (bone marrow, thymus, spleen, and lymph node), muscle tissues (heart and skeletal muscle), or adipose tissues (mesenteric adipose and mammary gland) identified a set of genes that were commonly expressed among related tissues. These data should provide useful information for medical research, especially for efforts to identify tissue-specific molecules as potential targets of novel drugs to treat human diseases.


Subject(s)
Gene Expression Profiling , Genome, Human , Oligonucleotide Array Sequence Analysis , Adult , Carbocyanines/metabolism , Fetus , Humans , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...