Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 11(3): 231854, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545618

ABSTRACT

This study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h-1). The study recruited 10 non-disabled individuals using TFSim and 10 individuals with unilateral TFAmp using a transfemoral prosthesis. Data were collected using an instrumented treadmill with built-in force plates, and subsequently, the GRFs and spatio-temporal parameters, as well as their asymmetry ratios, were analysed. When comparing the TFSim and TFAmp groups, no significant differences were found among the gait parameters and asymmetry ratios of all tested metrics except the vertical GRFs. The TFSim may not realistically reproduce the vertical GRFs during the weight acceptance and push-off phases. The structural and functional variations in prosthetic limbs and components between the TFSim and TFAmp groups may be primary contributors to the difference in the vertical GRFs. These results suggest that TFSim might be able to emulate the gait of individuals with TFAmp regarding the majority of spatio-temporal and GRF parameters. However, the vertical GRFs of TFSim should be interpreted with caution.

2.
Article in English | MEDLINE | ID: mdl-37721878

ABSTRACT

Understanding the lower-limb coordination of individuals with unilateral transfemoral amputation (uTFA) while walking is essential to understand their gait mechanisms. Continuous relative phase (CRP) analysis provides insights into gait coordination patterns of the neuromusculoskeletal system based on movement kinematics. Fourteen individuals with uTFA and their age-matched non-disabled individuals participated in this study. Kinematic data of the lower limbs of the participants were collected during walking. The joint angles, segment angles, and CRP values of the thigh-shank and shank-foot couplings were investigated. The curves among the lower limbs of the participants were compared using a statistical parametric mapping test. Compensatory strategies were found in the lower limbs from coordination patterns. In thigh-shank coupling, although distinct coordination traits in stance and swing phases among the lower limbs were found, the lower limbs in both groups were discovered to remain in a similar coordination pattern during gait. For individuals with uTFA, in shank-foot coupling, intact limbs demonstrated a short period of foot-leading pattern which was significantly different from that of the other limbs during mid-stance to compensate for the weaker force generation by prosthetic limbs. The findings offer normative coordination patterns on the walking of individuals with uTFA, which could benefit prosthetic gait rehabilitation and development.


Subject(s)
Artificial Limbs , Thigh , Humans , Gait , Lower Extremity , Walking , Amputation, Surgical , Biomechanical Phenomena
3.
Article in English | MEDLINE | ID: mdl-37379180

ABSTRACT

Transfemoral prosthesis users (TFPUs) typically have a high risk of balance loss and falling. Whole-body angular momentum ( [Formula: see text] is a common measure for assessing dynamic balance during human walking. However, little is known about how unilateral TFPUs maintain this dynamic balance through segment-to-segment cancellation strategies. Better understanding of the underlying mechanisms of dynamic balance control in TFPUs is required to improve gait safety. Thus, this study aimed to evaluate dynamic balance in unilateral TFPUs during walking at a self-selected constant speed. Fourteen unilateral TFPUs and fourteen matched controls performed level-ground walking at a comfortable speed on a straight, 10-m-long walkway. In the sagittal plane, the TFPUs had a greater and smaller range of [Formula: see text] compared to controls during intact and prosthetic steps, respectively. Further, the TFPUs generated greater average positive and negative [Formula: see text] than did the controls during intact and prosthetic steps, respectively, which may necessitate larger step-to-step postural changes in the forward and backward rotation about the body center of mass (COM). In the transverse plane, no significant difference was observed in the range of [Formula: see text] between groups. However, the TFPUs displayed smaller negative average [Formula: see text] in the transverse plane than did the controls. In the frontal plane, the TFPUs and controls demonstrated similar range of [Formula: see text] and step-to-step whole-body dynamic balance owing to the employment of different segment-to-segment cancellation strategies. Our findings should be interpreted and generalized with caution for the demographic features in our participants.


Subject(s)
Artificial Limbs , Walking , Humans , Biomechanical Phenomena , Gait , Motion , Postural Balance
4.
R Soc Open Sci ; 10(3): 221198, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908994

ABSTRACT

Understanding the sprinting patterns of individuals with unilateral transfemoral amputation (uTFA) is important for designing improved running-specific prostheses and for prosthetic gait rehabilitation. Continuous relative phase (CRP) analysis acquires clues from movement kinematics and obtains insights into the sprinting coordination of individuals with uTFA. Seven individuals with uTFA sprinted on a 40 m runway. The spatio-temporal parameters, joint and segment angles of the lower limbs were obtained, and CRP analysis was performed on thigh-shank and shank-foot couplings. Subsequently, the asymmetry ratios of the parameters were calculated. Statistical analyses were performed between the lower limbs. Significant differences in the stance time, stance phase percentage, ankle joint angles and CRP of the shank-foot coupling (p < 0.05) were observed between the lower limbs. The primary contributor to these differences could be the structural differences between the lower limbs. Despite the presence of different coordination features in the stance and swing phases between the lower limbs, no significant difference in the coordination patterns of the thigh-shank coupling was observed. This may be a compensation strategy for achieving coordination patterns with improved symmetry between the lower limbs. The results of this study provide novel insights into the sprinting movement patterns of individuals with uTFA.

5.
Front Bioeng Biotechnol ; 11: 1130353, 2023.
Article in English | MEDLINE | ID: mdl-36937747

ABSTRACT

Adaptive locomotion is an essential behavior for animals to survive. The central pattern generator in the spinal cord is responsible for the basic rhythm of locomotion through sensory feedback coordination, resulting in energy-efficient locomotor patterns. Individuals with symmetrical body proportions exhibit an energy-efficient symmetrical gait on flat ground. In contrast, individuals with lower limb amputation, who have morphologically asymmetrical body proportions, exhibit asymmetrical gait patterns. However, it remains unclear how the nervous system adjusts the control of the lower limbs. Thus, in this study, we investigated how individuals with unilateral transtibial amputation control their left and right lower limbs during locomotion using a two-dimensional neuromusculoskeletal model. The model included a musculoskeletal model with 7 segments and 18 muscles, as well as a neural model with a central pattern generator and sensory feedback systems. Specifically, we examined whether individuals with unilateral transtibial amputation acquire prosthetic gait through a symmetric or asymmetric feedback control for the left and right lower limbs. After acquiring locomotion, the metabolic costs of transport and the symmetry of the spatiotemporal gait factors were evaluated. Regarding the metabolic costs of transportation, the symmetric control model showed values approximately twice those of the asymmetric control model, whereas both scenarios showed asymmetry of spatiotemporal gait patterns. Our results suggest that individuals with unilateral transtibial amputation can reacquire locomotion by modifying sensory feedback parameters. In particular, the model reacquired reasonable locomotion for activities of daily living by re-searching asymmetric feedback parameters for each lower limb. These results could provide insight into effective gait assessment and rehabilitation methods to reacquire locomotion in individuals with unilateral transtibial amputation.

6.
Prosthet Orthot Int ; 47(3): 253-257, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36037278

ABSTRACT

BACKGROUND: An increased understanding of biomechanical determinants that influence the sprint performance of para-athletes with a unilateral transfemoral amputation will provide us with a basis for better evaluating athletes' sprint performance and would be expected to aid in the development of more effective training methods and running-specific prosthesis selection guidelines. OBJECTIVES: The aim of this study was to investigate the relative contributions of mechanical determinants to the top running speeds of para-athletes with unilateral transfemoral amputation wearing a running-specific prosthesis. STUDY DESIGN: Observational study within the subject. METHODS: Nine para-athletes with unilateral transfemoral amputation wearing a running-specific prosthesis were recruited in this study. They were asked to run at their respective constant top speeds on an instrumented treadmill. From the ground reaction force and spatiotemporal parameters, three mechanical variables-step frequency, mass-specific averaged vertical ground-reaction force, and contact length-were determined for both the affected and unaffected limbs. RESULTS: Stepwise regression analysis showed that the contact length of the affected limb was significant and an independent factor of top running speed ( ß = 0.760, P < 0.05), with a coefficient of determination ( R2 ) of 0.577 ( P < 0.05), whereas the other variables were not associated. CONCLUSION: These results suggest that prosthetic components and alignment are crucial to determining the maximal sprinting performance in uTFA.


Subject(s)
Amputees , Para-Athletes , Running , Humans , Biomechanical Phenomena , Amputation, Surgical
7.
PLoS One ; 17(12): e0279593, 2022.
Article in English | MEDLINE | ID: mdl-36548294

ABSTRACT

Gait pattern classification in individuals with lower-limb amputation could help in developing personalized prosthetic prescriptions and tailored gait rehabilitation. However, systematic classifications of gait patterns in this population have been scarcely explored. This study aimed to determine whether the gait patterns in individuals with unilateral transfemoral amputation (UTFA) can be clustered into homogeneous subgroups using spatiotemporal parameters across a range of walking speeds. We examined spatiotemporal gait parameters, including step length and cadence, in 25 individuals with UTFA (functional level K3 or K4, all non-vascular amputations) while they walked on a split-belt instrumented treadmill at eight speeds. Hierarchical cluster analysis (HCA) was used to identify clusters with homogeneous gait patterns based on the relationships between step length and cadence. Furthermore, after cluster formation, post-hoc analyses were performed to compare the spatiotemporal parameters and demographic data among the clusters. HCA identified three homogeneous gait pattern clusters, suggesting that individuals with UTFA have several gait patterns. Further, we found significant differences in the participants' body height, sex ratio, and their prosthetic knee component among the clusters. Therefore, gait rehabilitation should be individualized based on body size and prosthetic prescription.


Subject(s)
Amputees , Artificial Limbs , Humans , Gait , Amputation, Surgical , Walking , Lower Extremity , Cluster Analysis , Biomechanical Phenomena , Amputees/rehabilitation
8.
Sci Rep ; 12(1): 17501, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261465

ABSTRACT

Lower-limb amputation imposes a health burden on amputees; thus, gait assessments are required prophylactically and clinically, particularly for individuals with unilateral transfemoral amputation (UTFA). The centre of pressure (COP) during walking is one of the most useful parameters for evaluating gait. Although superimposed COP trajectories reflect the gait characteristics of individuals with neurological disorders, the quantitative characteristics based on the COP trajectories of individuals with UTFA remain unclear. Thus, these COP trajectories were investigated across a range of walking speeds in this study. The COP trajectories were recorded on a split-belt force-instrumented treadmill at eight walking speeds. Asymmetry and variability parameters were compared based on the COP trajectories of 25 individuals with UTFA and 25 able-bodied controls. The COP trajectories of the individuals with UTFA were significantly larger in lateral asymmetry and variability but did not show significant differences in anterior-posterior variability compared with those of the able-bodied controls. Further, the individuals with UTFA demonstrated larger lateral asymmetry at lower speeds. These results suggest that (1) individuals with UTFA adopt orientation-specific balance control strategies during gait and (2) individuals with UTFA could also be exposed to a higher risk of falling at lower walk speeds.


Subject(s)
Amputees , Artificial Limbs , Humans , Amputation, Surgical/methods , Walking , Gait , Biomechanical Phenomena
9.
J Neuroeng Rehabil ; 19(1): 33, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35321725

ABSTRACT

BACKGROUND: Individuals with unilateral transfemoral amputation are prone to developing health conditions such as knee osteoarthritis, caused by additional loading on the intact limb. Such individuals who can run again may be at higher risk due to higher ground reaction forces (GRFs) as well as asymmetric gait patterns. The two aims of this study were to investigate manipulating step frequency as a method to reduce GRFs and its effect on asymmetric gait patterns in individuals with unilateral transfemoral amputation while running. METHODS: This is a cross-sectional study. Nine experienced track and field athletes with unilateral transfemoral amputation were recruited for this study. After calculation of each participant's preferred step frequency, each individual ran on an instrumented treadmill for 20 s at nine different metronome frequencies ranging from - 20% to + 20% of the preferred frequency in increments of 5% with the help of a metronome. From the data collected, spatiotemporal parameters, three components of peak GRFs, and the components of GRF impulses were computed. The asymmetry ratio of all parameters was also calculated. Statistical analyses of all data were conducted with appropriate tools based on normality analysis to investigate the main effects of step frequency. For parameters with significant main effects, linear regression analyses were further conducted for each limb. RESULTS: Significant main effects of step frequency were found in multiple parameters (P < 0.01). Both peak GRF and GRF impulse parameters that demonstrated significant main effects tended towards decreasing magnitude with increasing step frequency. Peak vertical GRF in particular demonstrated the most symmetric values between the limbs from - 5% to 0% metronome frequency. All parameters that demonstrated significant effects in asymmetry ratio became more asymmetric with increasing step frequency. CONCLUSIONS: For runners with a unilateral transfemoral amputation, increasing step frequency is a viable method to decrease the magnitude of GRFs. However, with the increase of step frequency, further asymmetry in gait is observed. The relationships between step frequency, GRFs, and the asymmetry ratio in gait may provide insight into the training of runners with unilateral transfemoral amputation for the prevention of injury.


Subject(s)
Amputees , Artificial Limbs , Running , Amputation, Surgical , Biomechanical Phenomena , Cross-Sectional Studies , Gait , Humans
10.
J Biomech ; 134: 110984, 2022 03.
Article in English | MEDLINE | ID: mdl-35182901

ABSTRACT

During human locomotion, each limb performs step-to-step work on the body center of mass to maintain forward walking. This energy exchange relies on physiological mechanisms which are altered or impaired in transfemoral prosthesis users (TFPUs). Exploring step-to-step energy exchange modifications displayed by TFPUs at greater walking speeds may provide insight into their means for improving gait efficiency. The primary aim of this study was to characterize the effects of walking speed on mechanical work in unilateral TFPUs. The secondary aim assessed the effect of prosthetic knee (microprocessor, mechanical passive) on limb collision work. Twenty-five TFPUs walked with their customary prosthesis on a split-belt instrumented treadmill at eight speeds (0.55-1.53 m/s range), and collision, midstance, and push-off work were calculated for each limb. TFPUs displayed a significant (p < 0.001) bilateral increase in collision work with increased walking speed, but midstance and push-off work increased only for the sound limb and remained nearly constant for the prosthetic limb. TFPUs displayed significantly (p < 0.001) less push-off work generated by the prosthetic limb across all speeds. A microprocessor knee was associated with reduced sound limb collision work across speeds with the peak (negative) power being significantly greater for mechanical knees (p = 0.032). Results suggest that TFPU gait inefficiency may be related to a near complete loss of energy transfer on the prosthetic limb, relying on the sound limb to drive energy changes. Such reliance emphasizes need for attention to the long-term effects on sound limb health and possible benefit of microprocessor knees to offset that impact.


Subject(s)
Amputees , Artificial Limbs , Knee Prosthesis , Biomechanical Phenomena , Gait/physiology , Humans , Prosthesis Design , Walking , Walking Speed
11.
J Biomech ; 130: 110845, 2022 01.
Article in English | MEDLINE | ID: mdl-34749160

ABSTRACT

Individuals with unilateral transfemoral amputation (uTFA) walk asymmetrically. Investigating gait symmetry in ground reaction force (GRF) is critical because asymmetric loading on the residual limb can result in injury. The aim of this study was to investigate the GRF of individuals with uTFA by systematically controlling their walking at eight speeds(2.0-5.5 km/h with increments of 0.5 km/h) on a treadmill. Forty-eight individuals participated in this study, which included 24 individuals with uTFA (K3 and K4) and 24 individuals without amputation. GRFs (anteroposterior, mediolateral, and vertical) of the prosthetic and intact limb steps were collected for the individuals with uTFA and those of the right limb were collected for the control group. Peak force values of the GRF components, temporal parameters, impulses, and their asymmetry ratios were investigated and statistically analyzed. With an increasing walking speed, the magnitude of GRF changed gradually; individuals with uTFA exhibited increased GRF asymmetry in the vertical and mediolateral components, while that of the anteroposterior component remained constant. uTFA individuals typically maintained a constant asymmetry ratio in the mediolateral and anteroposterior (braking and propulsive) GRF impulses across a wide range of walking speeds. This result suggests that individuals with uTFA may cope with various walking speeds by maintaining symmetric mediolateral and anteroposterior impulses. The data provided in this study can serve as normative data for the GRF and its symmetry across a range of walking speeds in individuals with uTFA.


Subject(s)
Amputees , Artificial Limbs , Biomechanical Phenomena , Gait , Humans , Walking , Walking Speed
12.
Front Bioeng Biotechnol ; 10: 1041060, 2022.
Article in English | MEDLINE | ID: mdl-36727041

ABSTRACT

The asymmetrical gait of individuals with unilateral transfemoral amputation has been well documented. However, there is not a wealth of investigation into asymmetries during the double limb stance depending on whether the intact or prosthetic limb is leading. The first aim of this study was to compare ground reaction forces during the double limb stance of individuals with unilateral transfemoral amputation depending on whether their intact (initial double limb stance) or prosthetic (terminal double limb stance) limb was leading. The second aim of this study was to compare the asymmetry ratio of ground reaction forces during the double limb stance between individuals with and without unilateral transfemoral amputation. Thirty individuals, fifteen with unilateral transfemoral amputation and fifteen who were able-bodied, were recruited for this study. Each individual walked on an instrumented treadmill for 30 s at eight different speeds, ranging from 2.0 km/h to 5.5 km/h with .5 km/h increments. Ground reaction force parameters, temporal parameters, and asymmetry ratios of all parameters were computed from the data collected. The appropriate statistical analyses of all data based on normality were conducted to investigate the aims of this study. Significant main effects of speed, double limb stance, and their interactions were found for most parameters (p < .01 or p < .05). Individuals with unilateral transfemoral amputation spent a longer duration in terminal double limb stance than initial double limb stance at all tested speeds. They also experienced significantly higher peak vertical ground reaction force during initial double limb stance compared to terminal double limb stance with increasing walking speed. However, during terminal double limb stance, higher anteroposterior ground reaction force at initial contact was found when compared to initial double limb stance. Significant differences between individuals with unilateral transfemoral amputation and able-bodied individuals were found in asymmetry ratios for peak vertical ground reaction force, anteroposterior ground reaction force, anteroposterior shear, and mediolateral shear at all tested speeds. Asymmetrical loading persists in individuals with unilateral transfemoral amputation during double limb stance. Increasing walking speed increased ground reaction force loading asymmetries, which may make individuals with unilateral transfemoral amputation more susceptible to knee osteoarthritis or other musculoskeletal disorders. Further study is necessary to develop ideal gait strategies for the minimization of gait asymmetry in individuals with unilateral transfemoral amputation.

13.
Sci Rep ; 11(1): 4793, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637849

ABSTRACT

Although weight transfer is an important component of gait rehabilitation, the biomechanical strategy underlying the vertical ground reaction force loading/unloading in individuals with unilateral transfemoral amputation between intact and prosthetic limbs remains unclear. We investigated weight transfer between limbs at different walking speeds in 15 individuals with unilateral transfemoral amputation and 15 individuals without amputation as controls, who walked on an instrumented treadmill. The normalized unloading and loading rates were calculated as the slope of decay and rise phase of the vertical ground reaction force, respectively. We performed linear regression analyses for trailing limb's unloading rate and leading limb's loading rate between the prosthetic, intact, and control limbs. While loading rate increased with walking speed in all three limbs, the greatest increase was observed in the intact limb. In contrast to the other limbs, the prosthetic limb unloading rate was relatively insensitive to speed changes. Consequently, the regression line between trailing prosthetic and leading intact limbs deviated from other relationships. These results suggest that weight transfer is varied whether the leading or trailing limb is the prosthetic or intact side, and the loading rate of the leading limb is partially affected by the unloading rate of the contralateral trailing limb.


Subject(s)
Amputation, Surgical , Walking , Adult , Amputation, Surgical/rehabilitation , Biomechanical Phenomena , Body Weight , Female , Humans , Male , Middle Aged , Walking Speed , Weight-Bearing
14.
J Biomech ; 115: 110201, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33388484

ABSTRACT

The ability to sustain steady straight-ahead walking is one goal of gait rehabilitation for individuals with unilateral above-knee (UAK) amputation. Despite the morphological and musculoskeletal asymmetry resulting from unilateral limb loss, the mediolateral ground-reaction-impulse (GRI) should be counterbalanced between the affected and unaffected limbs during straight-ahead walking. Therefore, we investigated the strategies of mediolateral ground-reaction-force (GRF) generation adopted by UAK prosthesis users walking along a straight path. GRFs of 15 participants with UAK amputation were measured during straight-ahead walking. Then, the mediolateral GRI, stance time, and mean mediolateral GRF during the stance phase of the affected and unaffected limbs were compared. To better understand the GRF generation strategy, statistical-parametric-mapping (SPM) was applied to assess the phase-dependent difference of the mediolateral GRFs between two limbs. The results showed that UAK prosthesis users can achieve symmetric mediolateral GRI during straight-ahead walking by adopting an asymmetric gait strategy: shorter stance time and higher mean mediolateral GRF over the stance phase for the affected than for the unaffected limb. In addition, the analysis using SPM revealed that the affected limb generates a higher mean medial GRF component than the unaffected limb, especially during the single-support phase. Thus, a higher medial GRF during the single-support phase of the affected limb may allow UAK prosthesis users to achieve mediolateral GRI that are similar to those of the unaffected limb. Further insights on these mechanics may serve as guidelines on the improved design of prosthetic devices and the rehabilitation needs of UAK prosthesis users.


Subject(s)
Amputees , Artificial Limbs , Biomechanical Phenomena , Gait , Humans , Walking
15.
Front Bioeng Biotechnol ; 9: 793651, 2021.
Article in English | MEDLINE | ID: mdl-35024365

ABSTRACT

Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like "bouncing step" using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb's step and decelerated in the unaffected limb's step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.

16.
Sports Biomech ; : 1-12, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33112726

ABSTRACT

As a fundamental motor pattern, the ability to run at a range of constant speeds is a prerequisite for participating in competitive games and recreational sports. However, it remains unclear how unilateral transfemoral amputees modulate anterior and posterior ground reaction force impulses (GRFIs) in order to maintain constant running speeds. The purpose of this study was to investigate anterior and posterior GRFIs across a wide range of constant running speeds in unilateral transfemoral amputees wearing a running-specific prosthesis. Eleven runners with unilateral transfemoral amputation ran on an instrumented treadmill at 5 different speeds (30%, 40%, 50%, 60%, and 70% of the average velocity of their 100-m personal records). Anterior-posterior ground reaction forces (GRFs) were measured at 1000 Hz over 14 consecutive steps. Impulse, magnitude, and duration of anterior and posterior GRFs were compared between the affected and unaffected limbs at each speed. The net anterior-posterior GRFI, reflecting the changes in horizontal running velocity, was consistently positive (propulsion) in the affected limb and negative (braking) in the unaffected limb at all speeds. Regardless of running speed, unilateral transfemoral amputees maintain constant running speeds not over each step, but over 2 consecutive steps (i.e., one stride).

17.
Clin Biomech (Bristol, Avon) ; 80: 105132, 2020 12.
Article in English | MEDLINE | ID: mdl-32768802

ABSTRACT

BACKGROUND: Running with prostheses has become a common activity for amputees participating in sports and recreation. However, very few studies have characterized the kinematic and kinetic parameters of walking in individuals with amputation who are runners. Thus, this study attempts to elucidate the kinematics and kinetics of walking in runners with a unilateral transfemoral amputation or knee-disarticulation. METHODS: This study experimentally compares the prosthetic and intact limbs of runners with prostheses as well as compares the findings against the limbs of age-matched able-bodied individuals while walking. Fourteen runners with a unilateral transfemoral amputation or knee-disarticulation were recruited and 14 age-matched able-bodied individuals were prepared using gait database. Spatiotemporal, kinematic, and kinetic parameters of walking were analyzed using a 3-demensional motion capture system. RESULTS: The results showed that the peak ankle positive power at pre-swing and peak hip positive power from loading response to mid stance in the intact limb were significantly larger than that in the prosthetic limb. Moreover, to compensate for missing anatomical functions on the prosthetic limb, it appeared that the intact limb of the runners generated larger peak joint power by producing more ankle plantarflexor and hip extensor moments while walking. INTERPRETATION: This study demonstrated that the runners rely on their intact limb while walking. Training of hip extensor muscles of the intact limb may be beneficial for these individuals.


Subject(s)
Artificial Limbs , Disarticulation , Femur/surgery , Knee Prosthesis , Running/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Humans , Kinetics , Male
18.
Clin Biomech (Bristol, Avon) ; 75: 104999, 2020 05.
Article in English | MEDLINE | ID: mdl-32339944

ABSTRACT

BACKGROUND: Understanding the potential risks of running-related injuries in unilateral transfemoral amputees contributes to the development and implementation of the injury prevention programme in running gait rehabilitation. We investigated the vertical ground reaction force loading in unilateral transfemoral amputees who used running-specific prostheses across a range of running speeds. METHODS: Ten unilateral transfemoral amputees and ten non-amputees performed running trials on an instrumented treadmill at the incremental speeds of 30, 40, 50, and 60% of their maximum acquired speeds. Per-step and cumulative vertical instantaneous loading rates were calculated from the vertical ground reaction force in the affected, unaffected, and non-amputated control limbs. FINDINGS: Both the per-step and cumulative vertical instantaneous loading rates of the unaffected limbs in runners with unilateral transfemoral amputation were significantly greater than the affected and non-amputated control limbs at all speeds. INTERPRETATION: The results of the present study suggest that runners with unilateral transfemoral amputation may be exposed to a greater risk of running-related injuries in their unaffected limbs compared to the affected and non-amputated control limbs.


Subject(s)
Amputees , Artificial Limbs , Running , Adult , Biomechanical Phenomena , Gait , Humans , Male , Weight-Bearing
19.
Sci Rep ; 10(1): 5965, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249808

ABSTRACT

Spring-like leg behavior is a general feature of mammalian bouncing gaits, such as running and hopping. Although increases in step frequency at a given running speed are known to increase the stiffness of the leg spring (kleg) in non-amputees, little is known about stiffness regulation in unilateral transfemoral amputees. In this study, we investigated stiffness regulation at different step frequencies at a given running speed in unilateral transfemoral amputees. We recruited nine unilateral transfemoral amputees wearing running-specific prostheses. They were asked to perform the action of running across a range of step frequencies (±20, ±15, ±10, ±5, and 0% of their preferred step frequency) at a given speed on an instrumented treadmill. The kleg values were calculated using ground reaction force data in both the affected and unaffected limbs. It was found that kleg increased with increasing step frequency for the unaffected limb, but not for the affected limb. Consequently, the unilateral transfemoral amputees attained the desired step frequency in the unaffected limb, but were unable to match the three highest step frequencies using their affected limbs. These results suggest that the stiffness regulation strategy during running differs between the affected and unaffected limbs.


Subject(s)
Amputees , Artificial Limbs , Gait/physiology , Running/physiology , Adolescent , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male , Movement/physiology , Young Adult
20.
Gait Posture ; 77: 69-74, 2020 03.
Article in English | MEDLINE | ID: mdl-31999980

ABSTRACT

BACKGROUND: Walking and mobility are essential for a satisfactory quality of life. However, individuals with transfemoral amputations have difficulties in preventing falls due to prosthetic knee buckling, defined as the sudden loss of postural support during weight-bearing activities. The risk of prosthetic knee buckling can be evaluated by determining the prosthetic knee angular impulse (PKAI) during the early stance phase. However, little is known about the factors associated with PKAI in individuals with unilateral transfemoral amputations. RESEARCH QUESTION: What are the demographic factors that can be associated with the risk of prosthetic knee buckling, quantified by PKAI, during walking in individuals with unilateral transfemoral amputations? METHODS: Thirteen individuals with unilateral transfemoral amputations were instructed to perform level walking at a comfortable, self-selected speed on a straight, 10-m walkway. PKAI was calculated as the time integral of the prosthetic knee external flexion-extension moment during the initial 40 % of the prosthetic gait cycle. We used Pearson's correlation coefficients to examine the relationship of PKAI with the following variables: the subject's body height, body mass, and age; the time since amputation; and the current prosthesis use history. Furthermore, an independentt-test was used to compare PKAI according to the sex (male vs. female) and etiology (trauma vs. nontrauma). RESULTS: PKAI exhibited a significant negative linear relationship with the subject's body height and body mass. However, it showed no significant correlation with age, the time since amputation, and the current prosthesis use history. It was also significantly greater in women than in men and was not significantly influenced by the etiology. SIGNIFICANCE: Awareness about demographic factors associated with PKAI during walking can contribute to fall assessments in gait rehabilitation programs for individuals with unilateral transfemoral amputations.


Subject(s)
Amputation, Surgical , Artificial Limbs , Joint Instability/epidemiology , Knee Joint , Accidental Falls , Adolescent , Adult , Biomechanical Phenomena , Body Height , Body Weight , Female , Gait , Gait Analysis , Humans , Joint Instability/physiopathology , Knee , Male , Middle Aged , Quality of Life , Range of Motion, Articular , Sex Factors , Walking , Weight-Bearing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...