Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(20): 207401, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809102

ABSTRACT

Brillouin light scattering in ferromagnetic materials usually involves one magnon and two photons and their total angular momentum is conserved. Here, we experimentally demonstrate the presence of a helicity-changing two-magnon Brillouin light scattering in a ferromagnetic crystal, which can be viewed as a four-wave mixing process involving two magnons and two photons. Moreover, we observe an unconventional helicity-changing one-magnon Brillouin light scattering, which apparently infringes the conservation law of the angular momentum. We show that the crystal angular momentum intervenes to compensate the missing angular momentum in the latter scattering process.

2.
Phys Rev Lett ; 120(13): 133602, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694172

ABSTRACT

A ferromagnetic sphere can support optical vortices in the form of whispering gallery modes and magnetic quasivortices in the form of magnetostatic modes with nontrivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and magnetic quasivortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behavior in the Brillouin light scattering. New avenues for chiral optics and optospintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.

3.
Phys Rev Lett ; 116(22): 223601, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27314717

ABSTRACT

We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometrical birefringence, and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...