Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 4(3): 160849, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28405373

ABSTRACT

Nature has always served as an inspiration for scientists, helping them to solve a large diversity of technical problems. In our case, we are interested in the directional transport of oily liquids and as a model for this application we used the flat bug Dysodius lunatus. In this report, we present arrays of drops looking like polymer microstructures produced by the two-photon polymerization technique that mimic the micro-ornamentation from the bug's cuticle. A good directionality of oil transport was achieved, directly controlled by the direction of the pointed microstructures at the surface. If the tips of the drop-like microstructures are pointing towards the left side, the liquid front moves to the right and vice versa. Similar effects could be expected for the transport of oily lubricants. These results could, therefore, be interesting for applications in friction and wear reduction.

2.
J Exp Biol ; 213(Pt 7): 1115-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20228348

ABSTRACT

Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.


Subject(s)
Insecta/physiology , Sarraceniaceae/anatomy & histology , Sarraceniaceae/parasitology , Waxes/chemistry , Adhesiveness , Animals , Crystallization , Female , Insecta/ultrastructure , Microscopy, Atomic Force , Models, Biological , Sarraceniaceae/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...