Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 105(12): 4775-80, 2008 Mar 25.
Article in English | MEDLINE | ID: mdl-18349145

ABSTRACT

It is well established that an increase in iron supply causes an increase in total oceanic primary production in many regions, but the physiological mechanism driving the observed increases has not been clearly identified. The Southern Ocean iron enrichment experiment, an iron fertilization experiment in the waters closest to Antarctica, resulted in a 9-fold increase in chlorophyll (Chl) concentration and a 5-fold increase in integrated primary production. Upon iron addition, the maximum quantum yield of photosynthesis (phi(m)) rapidly doubled, from 0.011 to 0.025 mol C.mol quanta(-1). Paradoxically, this increase in light-limited productivity was not accompanied by a significant increase in light-saturated productivity (P(max)(b)). P(max)(b), maximum Chl normalized productivity, was 1.34 mg C.mg Chl(-1).h(-1) outside and 1.49 mg C.mg Chl(-1).h(-1) inside the iron-enriched patch. The importance of phi(m) as compared with P(max)(b) in controlling the biological response to iron addition has vast implications for understanding the ecological response to iron. We show that an iron-driven increase in phi(m) is the proximate physiological mechanism affected by iron addition and can account for most of the increases in primary production. The relative importance of phi(m) over P(max)(b) in this iron-fertilized bloom highlights the limitations of often-used primary productivity algorithms that are driven by estimates of P(max)(b) but largely ignore variability in phi(m) and light-limited productivity. To use primary productivity models that include variability in iron supply in prediction or forecasting, the variability of light-limited productivity must be resolved.


Subject(s)
Iron/pharmacology , Photosynthesis , Phytoplankton/drug effects , Phytoplankton/physiology , Analysis of Variance , Carotenoids/metabolism , Chemical Fractionation , Chlorophyll/metabolism , Models, Biological , Oceans and Seas , Photosynthesis/drug effects , Time Factors
2.
Science ; 304(5669): 408-14, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15087542

ABSTRACT

The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.


Subject(s)
Carbon/metabolism , Iron , Phytoplankton/growth & development , Silicic Acid , Atmosphere , Biomass , Carbon/analysis , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Chlorophyll/analysis , Chlorophyll A , Diatoms/growth & development , Diatoms/metabolism , Ecosystem , Iron/analysis , Iron/metabolism , Nitrates/analysis , Nitrates/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Oceans and Seas , Photosynthesis , Phytoplankton/metabolism , Seawater/chemistry , Silicic Acid/analysis , Silicic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...