Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 6(4)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007818

ABSTRACT

Disseminated infection by Candida species represents a common, often life-threatening condition. Increased resistance to current antifungal drugs has led to an urgent need to develop new antifungal drugs to treat this pathogen. However, in vivo screening of candidate antifungal compounds requires large numbers of animals and using immunosuppressive agents to allow for fungal dissemination. To increase the efficiency of screening, to use fewer mice, and to remove the need for immunosuppressive agents, which may interfere with the drug candidates, we tested the potential for a novel approach using in vivo imaging of a fluorescent strain of Candida albicans, in a mouse strain deficient in the host defense peptide, murine ß-defensin 1 (mBD-1). We developed a strain of C. albicans that expresses red fluorescent protein (RFP), which exhibits similar infectivity to the non-fluorescent parent strain. When this strain was injected into immunocompetent mBD-1-deficient mice, we observed a non-lethal disseminated infection. Further, we could quantify its dissemination in real time, and observe the activity of an antifungal peptide mimetic drug by in vivo imaging. This novel method will allow for the rapid in vivo screening of antifungal drugs, using fewer mice, and increase the efficiency of testing new antifungal agents.

2.
Pathogens ; 8(3)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319507

ABSTRACT

Despite the high prevalence of women in graduate degree programs and equal or more women earning PhDs, MDs, and MD/PhDs, and despite efforts at individual and institutional levels to promote women in STEM fields, there remains a disparity in pay and academic advancement of women. Likewise, there is a paucity of women in top scientific and academic leadership positions. The causes of this gender disparity are complex and multi-factorial and to date no "magic bullet" approach has been successful in changing the landscape for women in academic and scientific fields. In this report we detail our experiences with a novel mechanism for promoting discussion and raising awareness of the challenges of gender disparity in the sciences. The Gordon Research Conferences (GRC) launched the Power Hour at its meetings in 2016: a dedicated, scheduled session held during the scientific meeting to facilitate discussion of challenges specific to women in science. Here we share our experience with hosting the second Power Hour at the 2019 GRC Immunology of Fungal Infections (IFI) meeting held in Galveston, TX. We will discuss the overall structure, key discussion points, and feedback from participants with the aim of supporting future efforts to empower women and underrepresented minority groups in science.

3.
J Immunol ; 201(9): 2767-2775, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30266768

ABSTRACT

Neutrophils are an important source of IL-1ß secretion in bacterial infections, where they infiltrate affected tissues in log-fold higher numbers than macrophages. Neutrophils also have functional NLRP3 and NLRC4 inflammasomes that can process pro-IL-1ß to the bioactive 17-kDa form. In the current study, we examined the role of IL-1ß in response to corneal infection with the filamentous fungus Aspergillus fumigatus and found that neutrophils were the predominant source of bioactive IL-1ß in the cornea. We also observed that caspase-11-/- mice exhibit the same susceptibility phenotype as IL-1ß-/-, ASC-/-, NLRP3-/-, and caspase-1-/- mice, with impaired neutrophil recruitment to infected corneas and increased hyphal growth. We further demonstrate that caspase-11 is required for caspase-1 activation and IL-1ß processing during infection. In vitro, we show that caspase-11 is regulated by the common type I IFN receptor (IFNAR) through JAK-STAT signaling and that caspase-11 is required for speck formation and caspase-1 activity. Aspergillus spores (conidia) stimulate IL-1ß processing and secretion in neutrophils activation of Dectin-1 and signaling through the Raf1 kinase/MEKK rather than the spleen tyrosine kinase pathway. Collectively, these findings reveal unexpected regulation of IL-1ß production by neutrophils in response to pathogenic fungi.


Subject(s)
Aspergillosis/immunology , Caspase 1/metabolism , Caspases/metabolism , Interleukin-1beta/biosynthesis , Neutrophils/immunology , Animals , Aspergillus fumigatus/immunology , Caspases, Initiator , Keratitis/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Signal Transduction/immunology
4.
Cell Host Microbe ; 20(5): 606-617, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27923704

ABSTRACT

Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression of the antimicrobial peptide ß-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression.


Subject(s)
Candida/immunology , Candidiasis, Oral/immunology , Epithelial Cells/immunology , Mouth Mucosa/immunology , Receptors, Interleukin-17/metabolism , Signal Transduction , beta-Defensins/metabolism , Animals , Cell Line , Humans , Mice , Mice, Knockout , Receptors, Interleukin-17/deficiency
5.
Nat Immunol ; 17(5): 583-92, 2016 May.
Article in English | MEDLINE | ID: mdl-26998763

ABSTRACT

Interleukin 1ß (IL-1ß) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1ß during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1ß production during T(H)17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1ß, whereas ATP stimulation triggered T cell production of IL-1ß via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on T(H)17 cells but not on type 1 helper T (T(H)1) cells, and ATP-treated T(H)17 cells showed enhanced survival compared with ATP-treated T(H)1 cells, suggesting autocrine action of T(H)17-derived IL-1ß. Together these data reveal a critical role for IL-1ß produced by a T(H)17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes/immunology , Th17 Cells/immunology , Adenosine Triphosphate/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/immunology , Carrier Proteins/metabolism , Caspase 8/genetics , Caspase 8/immunology , Caspase 8/metabolism , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Flow Cytometry , Gene Expression/immunology , Immunoblotting , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism
6.
Cell Host Microbe ; 17(3): 290-292, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25766289

ABSTRACT

Intracellular inflammasome complexes regulate critical cytokine responses to infections. In this issue of Cell Host & Microbe,Karki et al. (2015) show that protection against the fungus Aspergillus requires the combined efforts of the NLRP3 and AIM2 inflammasomes and involves both caspase-1 and caspase-8.


Subject(s)
Aspergillus fumigatus/immunology , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals
7.
PLoS Negl Trop Dis ; 9(3): e0003584, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25756647

ABSTRACT

BACKGROUND: Multiple recent outbreaks of Rift Valley Fever (RVF) in Africa, Madagascar, and the Arabian Peninsula have resulted in significant morbidity, mortality, and financial loss due to related livestock epizootics. Presentation of human RVF varies from mild febrile illness to meningoencephalitis, hemorrhagic diathesis, and/or ophthalmitis with residual retinal scarring, but the determinants for severe disease are not understood. The aim of the present study was to identify human genes associated with RVF clinical disease in a high-risk population in Northeastern Province, Kenya. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a cross-sectional survey among residents (N = 1,080; 1-85 yrs) in 6 villages in the Sangailu Division of Ijara District. Participants completed questionnaires on past symptoms and exposures, physical exam, vision testing, and blood collection. Single nucleotide polymorphism (SNP) genotyping was performed on a subset of individuals who reported past clinical symptoms consistent with RVF and unrelated subjects. Four symptom clusters were defined: meningoencephalitis, hemorrhagic fever, eye disease, and RVF-not otherwise specified. SNPs in 46 viral sensing and response genes were investigated. Association was analyzed between SNP genotype, serology and RVF symptom clusters. The meningoencephalitis symptom phenotype cluster among seropositive patients was associated with polymorphisms in DDX58/RIG-I and TLR8. Having three or more RVF-related symptoms was significantly associated with polymorphisms in TICAM1/TRIF, MAVS, IFNAR1 and DDX58/RIG-I. SNPs significantly associated with eye disease included three different polymorphisms TLR8 and hemorrhagic fever symptoms associated with TLR3, TLR7, TLR8 and MyD88. CONCLUSIONS/SIGNIFICANCE: Of the 46 SNPs tested, TLR3, TLR7, TLR8, MyD88, TRIF, MAVS, and RIG-I were repeatedly associated with severe symptomatology, suggesting that these genes may have a robust association with RVFV-associated clinical outcomes. Studies of these and related genetic polymorphisms are warranted to advance understanding of RVF pathogenesis.


Subject(s)
Immunity, Innate , Polymorphism, Single Nucleotide , Rift Valley Fever/genetics , Rift Valley Fever/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Cross-Sectional Studies , Female , Genotype , Haplotypes , Humans , Infant , Male , Middle Aged , Rift Valley fever virus/genetics , Toll-Like Receptor 3/genetics , Young Adult
8.
PLoS Negl Trop Dis ; 9(3): e0003548, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25764399

ABSTRACT

BACKGROUND: Mosquito-borne Rift Valley fever virus (RVFV) causes acute, often severe, disease in livestock and humans. To determine the exposure factors and range of symptoms associated with human RVF, we performed a population-based cross-sectional survey in six villages across a 40 km transect in northeastern Kenya. METHODOLOGY/PRINCIPAL FINDINGS: A systematic survey of the total populations of six Northeastern Kenyan villages was performed. Among 1082 residents tested via anti-RVFV IgG ELISA, seroprevalence was 15% (CI95%, 13-17%). Prevalence did not vary significantly among villages. Subject age was a significant factor, with 31% (154/498) of adults seropositive vs. only 2% of children ≤15 years (12/583). Seroprevalence was higher among men (18%) than women (13%). Factors associated with seropositivity included a history of animal exposure, non-focal fever symptoms, symptoms related to meningoencephalitis, and eye symptoms. Using cluster analysis in RVFV positive participants, a more severe symptom phenotype was empirically defined as having somatic symptoms of acute fever plus eye symptoms, and possibly one or more meningoencephalitic or hemorrhagic symptoms. Associated with this more severe disease phenotype were older age, village, recent illness, and loss of a family member during the last outbreak. In multivariate analysis, sheltering livestock (aOR = 3.5 CI95% 0.93-13.61, P = 0.065), disposing of livestock abortus (aOR = 4.11, CI95% 0.63-26.79, P = 0.14), and village location (P = 0.009) were independently associated with the severe disease phenotype. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a significant proportion of the population in northeastern Kenya has been infected with RVFV. Village and certain animal husbandry activities were associated with more severe disease. Older age, male gender, herder occupation, killing and butchering livestock, and poor visual acuity were useful markers for increased RVFV infection. Formal vision testing may therefore prove to be a helpful, low-technology tool for RVF screening during epidemics in high-risk rural settings.


Subject(s)
Rift Valley Fever/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Animal Husbandry , Animals , Antibodies, Viral/blood , Child , Cross-Sectional Studies , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Female , Humans , Kenya/epidemiology , Male , Middle Aged , Prevalence , Rift Valley Fever/epidemiology , Rift Valley fever virus/immunology , Seroepidemiologic Studies
9.
J Immunol ; 194(4): 1788-95, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25595775

ABSTRACT

Candida is an opportunistic fungal pathogen that colonizes the mucosal tract of humans. Pathogenic infection occurs in the presence of conditions causing perturbations to the commensal microbiota or host immunity. Early innate immune responses by the epithelium, including antimicrobial peptides (AMPs) and cytokines, are critical for protection against overgrowth. Reduced salivary AMP levels are associated with oral Candida infection, and certain AMPs, including human ß-defensins 1-3, have direct fungicidal activity. In this study, we demonstrate that murine ß-defensin 1 (mBD1) is important for control of early mucosal Candida infection and plays a critical role in the induction of innate inflammatory mediators. Mice deficient in mBD1, as compared with wild-type mice, exhibit elevated oral and systemic fungal burdens. Neutrophil infiltration to the sites of mucosal Candida invasion, an important step in limiting fungal infection, is significantly reduced in mBD1-deficient mice. These mice also exhibit defects in the expression of other AMPs, including mBD2 and mBD4, which may have direct anti-Candida activity. We also show that mBD1 deficiency impacts the production of important antifungal inflammatory mediators, including IL-1ß, IL-6, KC, and IL-17. Collectively, these studies demonstrate a role for the mBD1 peptide in early control of Candida infection in a murine model of mucosal candidiasis, as well as in the modulation of host immunity through augmentation of leukocyte infiltration and inflammatory gene regulation.


Subject(s)
Candida albicans/immunology , Candidiasis, Oral/immunology , Immunity, Innate/immunology , Immunity, Mucosal/immunology , beta-Defensins/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction
10.
J Immunol ; 194(4): 1763-75, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25609842

ABSTRACT

Although neutrophils are the most abundant cells in acute infection and inflammation, relatively little attention has been paid to their role in inflammasome formation and IL-1ß processing. In the present study, we investigated the mechanism by which neutrophils process IL-1ß in response to Streptococcus pneumoniae. Using a murine model of S. pneumoniae corneal infection, we demonstrated a requirement for IL-1ß in bacterial clearance, and we showed that Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1 are essential for IL-1ß production and bacterial killing in the cornea. Neutrophils in infected corneas had multiple specks with enzymatically active caspase-1 (YVAD-FLICA 660), and bone marrow neutrophils stimulated with heat-killed S. pneumoniae (signal 1) and pneumolysin (signal 2) exhibited multiple specks when stained for NLRP3, ASC, or Caspase-1. High-molecular mass ASC complexes were also detected, consistent with oligomer formation. Pneumolysin induced K(+) efflux in neutrophils, and blocking K(+) efflux inhibited caspase-1 activation and IL-1ß processing; however, neutrophils did not undergo pyroptosis, indicating that K(+) efflux and IL-1ß processing is not a consequence of cell death. There was also no role for lysosomal destabilization or neutrophil elastase in pneumolysin-mediated IL-1ß processing in neutrophils. Taken together, these findings demonstrate an essential role for neutrophil-derived IL-1ß in S. pneumoniae infection, and they elucidate the role of the NLRP3 inflammasome in cleavage and secretion of IL-1ß in neutrophils. Given the ubiquitous presence of neutrophils in acute bacterial and fungal infections, these findings will have implications for other microbial diseases.


Subject(s)
Caspase 1/immunology , Inflammasomes/immunology , Interleukin-1beta/immunology , Neutrophils/immunology , Potassium/metabolism , Animals , Apoptosis Regulatory Proteins/immunology , Bacterial Proteins/immunology , Blotting, Western , CARD Signaling Adaptor Proteins , Carrier Proteins/immunology , Caspase 1/metabolism , Disease Models, Animal , Enzyme Activation/immunology , Enzyme-Linked Immunosorbent Assay , Eye Infections, Bacterial/immunology , Eye Infections, Bacterial/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Interleukin-1beta/metabolism , Keratitis/immunology , Keratitis/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils/metabolism , Pneumococcal Infections , Signal Transduction/immunology , Spectrophotometry, Atomic , Streptolysins/immunology
11.
J Biol Chem ; 290(6): 3209-22, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25505250

ABSTRACT

Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-ß and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Receptors, Interleukin/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cells, Cultured , Chemokine CCL4/genetics , Chemokine CCL4/metabolism , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Endocytosis , Endosomes/metabolism , HEK293 Cells , Humans , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/metabolism , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin/genetics , Toll-Like Receptor 2/agonists
12.
Article in English | MEDLINE | ID: mdl-25384766

ABSTRACT

Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.


Subject(s)
Fungi/immunology , Immunity, Innate/immunology , Mycoses/immunology , Animals , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Disease Models, Animal , Epithelial Cells/immunology , Gastrointestinal Tract/immunology , Humans , Inflammasomes/immunology , Interleukin-17/immunology , Lectins, C-Type/immunology , Leukocytes/immunology , Macrophages/immunology , Mannose Receptor , Mannose-Binding Lectins/immunology , Mice , Receptors, Cell Surface/immunology , Receptors, Complement/immunology , Respiratory System/immunology , Skin/immunology , Urogenital System/immunology
13.
J Immunol ; 193(5): 2519-2530, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25063877

ABSTRACT

Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1ß maturation and resistance to fungal dissemination in Candida albicans infection. ß-Glucans are major components of fungal cell walls that trigger IL-1ß secretion in both murine and human immune cells. In this study, we sought to determine the contribution of ß-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1ß production in response to ß-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating ß-glucan-induced IL-1ß processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting ß-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1ß maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1ß production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating ß-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between ß-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Caspase 8/immunology , Fungal Polysaccharides/immunology , Interleukin-1beta/immunology , Lectins, C-Type/immunology , Macrophage-1 Antigen/immunology , beta-Glucans/immunology , Animals , Candida albicans/genetics , Candidiasis/genetics , Candidiasis/pathology , Carrier Proteins/genetics , Carrier Proteins/immunology , Caspase 8/genetics , Cell Death/genetics , Cell Death/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Fungal Polysaccharides/genetics , Humans , Interleukin-1beta/genetics , Lectins, C-Type/genetics , Macrophage-1 Antigen/genetics , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein
14.
Antimicrob Agents Chemother ; 58(7): 3820-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752272

ABSTRACT

There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/chemistry , Candidiasis, Oral/microbiology , Peptides/pharmacology , 3T3 Cells , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Bacteria/drug effects , Cell Survival , Drug Resistance, Fungal , High-Throughput Screening Assays , Hyphae/chemistry , Immunocompromised Host , Male , Mice , Microbial Sensitivity Tests , Molecular Mimicry , Peptides/chemistry , beta-Defensins/pharmacology
15.
J Exp Med ; 211(5): 887-907, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24752299

ABSTRACT

Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/physiopathology , Insulin/metabolism , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Obesity/complications , Analysis of Variance , Animals , CD11b Antigen/metabolism , Flow Cytometry , Immunohistochemistry , Inflammation/etiology , Mice , Real-Time Polymerase Chain Reaction
16.
Virology ; 449: 174-80, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24418550

ABSTRACT

Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1ß processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1ß during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells.


Subject(s)
Carrier Proteins/immunology , Inflammasomes/immunology , Rift Valley Fever/immunology , Rift Valley fever virus/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Carrier Proteins/genetics , Caspase 1/genetics , Caspase 1/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Rift Valley Fever/genetics , Rift Valley Fever/virology , Rift Valley fever virus/genetics
17.
Clin Vaccine Immunol ; 20(7): 962-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23595503

ABSTRACT

The human innate immune response to pathogens is not fully effective and mature until well into childhood, as exemplified by various responses to Toll-like receptor (TLR) agonists in newborns compared to adults. To better understand the mechanistic basis for this age-related difference in innate immunity, we compared tumor necrosis factor alpha (TNF-α) production by monocytes from cord blood (CB) and adult blood (AB) in response to LAM (lipoarabinomannan from Mycobacterium tuberculosis, a TLR2 ligand) and LPS (lipopolysaccharide from Escherichia coli, a TLR4 ligand). LPS or LAM-induced TNF-α production was 5 to 18 times higher in AB than in CB monocytes, whereas interleukin-1α (IL-1α) stimulated similar levels of TNF-α in both groups, suggesting that decreased responses to LPS or LAM in CB are unlikely to be due to differences in the MyD88-dependent signaling pathway. This impaired signaling was attributable, in part, to lower functional TLR4 expression, especially on CD14(+) CD16(+) monocytes, which are the primary cell subset for LPS-induced TNF-α production. Importantly, the frequency of CD14(+) CD16(+) monocytes in CB was 2.5-fold lower than in AB (P < 0.01). CB from Kenyan newborns sensitized to parasite antigens in utero had more CD14(+) CD16(+) monocytes (P = 0.02) and produced higher levels of TNF-α in response to LPS (P = 0.004) than CB from unsensitized Kenyan or North American newborns. Thus, a reduced CD14(+) CD16(+) activated/differentiated monocyte subset and a correspondingly lower level of functional TLR4 on monocytes contributes to the relatively low TNF-α response to LPS observed in immunologically naive newborns compared to the response in adults.


Subject(s)
Fetal Blood/immunology , Lipopolysaccharide Receptors/analysis , Lipopolysaccharides/immunology , Monocytes/immunology , Receptors, IgG/analysis , Toll-Like Receptor 4/analysis , Adult , Escherichia coli/chemistry , Escherichia coli/immunology , Female , GPI-Linked Proteins/analysis , Gene Expression , Humans , Infant, Newborn , Lipopolysaccharides/isolation & purification , Monocytes/chemistry , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/immunology , Pregnancy , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
J Virol ; 87(9): 4846-60, 2013 May.
Article in English | MEDLINE | ID: mdl-23408632

ABSTRACT

Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV.


Subject(s)
DEAD-box RNA Helicases/immunology , Interferon-beta/immunology , Mucous Membrane/virology , Rift Valley Fever/enzymology , Rift Valley Fever/immunology , Rift Valley fever virus/physiology , Animals , Cell Line , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Humans , Interferon-beta/genetics , Macrophages/immunology , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout/genetics , Mucous Membrane/immunology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
19.
Int Rev Immunol ; 32(1): 4-18, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23360155

ABSTRACT

Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.


Subject(s)
Epithelium, Corneal/immunology , Keratitis/immunology , Neutrophils/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Animals , Cell Movement , Contact Lenses/adverse effects , Cytokines/immunology , Epithelium, Corneal/microbiology , Humans , Immunity, Mucosal , Keratitis/etiology , Leukocidins/adverse effects , Lipopolysaccharides/immunology , Lymphocyte Antigen 96/metabolism , Pseudomonas Infections/complications , Toll-Like Receptors/metabolism
20.
Mediators Inflamm ; 2013: 751374, 2013.
Article in English | MEDLINE | ID: mdl-24453428

ABSTRACT

Alcoholic liver disease (ALD) is characterized by increased hepatic lipid accumulation (steatosis) and inflammation with increased expression of proinflammatory cytokines. Two of these cytokines, interleukin-1 ß (IL-1 ß ) and IL-18, require activation of caspase-1 via members of the NOD-like receptor (NLR) family. These NLRs form an inflammasome that is activated by pathogens and signals released through local tissue injury or death. NLR family pyrin domain containing 3 (Nlrp3) and NLR family CARD domain containing protein 4 (Nlrc4) have been studied minimally for their role in the development of ALD. Using mice with gene targeted deletions for Nlrp3 (Nlrp3(-/-)) and Nlrc4 (Nlrc4(-/-)), we analyzed the response to chronic alcohol consumption. We found that Nlrp3(-/-) mice have more severe liver injury with higher plasma alanine aminotransferase (ALT) levels, increased activation of IL-18, and reduced activation of IL-1B. In contrast, the Nlrc4(-/-) mice had similar alcohol-induced liver injury compared to C57BL/6J (B6) mice but had greatly reduced activation of IL-1 ß . This suggests that Nlrp3 and Nlrc4 inflammasomes activate IL-1 ß and IL-18 via caspase-1 in a differential manner. We conclude that the Nlrp3 inflammasome is protective during alcohol-induced liver injury.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Calcium-Binding Proteins/physiology , Carrier Proteins/physiology , Inflammasomes/physiology , Liver Diseases, Alcoholic/etiology , Animals , Chemokine CCL2/physiology , Choline Deficiency/complications , Interleukin-18/physiology , Interleukin-1beta/physiology , Methionine/deficiency , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , STAT3 Transcription Factor/physiology , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...