Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Tech ; 39(2): 471-480, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33046928

ABSTRACT

Enteric pathogens, such as non-typhoidal Salmonella, Campylobacter and Escherichia coli, can reside in the intestinal tract of many animals, including livestock, companion animals, small mammals and reptiles. Often, these animals can appear healthy; nonetheless, humans can become infected after direct or indirect contact, resulting in a substantial illness burden. An estimated 14% of the 3.2 million illnesses that occur in the United States of America (USA) each year from such enteric pathogens are attributable to animal contact. Surveillance for enteric pathogens in the USA includes the compilation and interpretation of both laboratory and epidemiologic data. However, the authors feel that a collaborative, multisectoral and transdisciplinary - or One Health - approach is needed for data collection and analysis, at every level. In addition, they suggest that the future of enteric illness surveillance lies in the development of improved technologies for pathogen detection and characterisation, such as genomic sequencing and metagenomics. In particular, using whole-genome sequencing to compare genetic sequences of enteric pathogens from humans, food, animals and the environment, can help to predict antimicrobial resistance among these pathogens, determine their genetic relatedness and identify outbreaks linked to a common source. In this paper, the authors describe three recent, multi-state human enteric illness outbreaks linked to animal contact in the USA and discuss how integrated disease surveillance was essential to outbreak detection and response. Additional datasharing between public health and animal health laboratories and epidemiologists at the local, national, regional and international level may help to improve surveillance for emerging animal and human health threats and lead to new opportunities for prevention.


Les agents pathogènes entériques tels que les Salmonella non typhiques, Campylobacter et Escherichia coli peuvent coloniser le tractus intestinal d'un grand nombre d'animaux y compris les espèces d'élevage, les animaux de compagnie, les petits mammifères et les reptiles. Les animaux porteurs sont souvent sains en apparence ; néanmoins, les humains peuvent contracter l'infection après un contact direct ou indirect avec un animal atteint, ce qui induit un fardeau significatif associé à ces maladies. D'après les estimations, environ 14 % des 3,2 millions de cas annuels d'infections par des agents pathogènes entériques aux États-Unis d'Amérique ont pour origine un contact avec des animaux. Aux États-Unis, la surveillance des agents pathogènes entériques est basée sur la collecte et l'interprétation des résultats de laboratoire et des données épidémiologiques. Les auteurs sont néanmoins convaincus de la nécessité de recourir à une approche collaborative, multisectorielle et transdisciplinaire (en d'autres termes, une approche Une seule santé) pour la collecte et l'analyse des données, à tous les niveaux. Ils considèrent également que la surveillance des infections entériques reposera à l'avenir sur le développement de technologies avancées dans le domaine de la détection et de la caractérisation des agents pathogènes, notamment le séquençage génomique et la métagénomique. En particulier, le recours au séquençage du génome entier afin de comparer les séquences d'agents pathogènes d'origine humaine, alimentaire, animale et environnementale permettra d'anticiper l'apparition d'antibiorésistances, de déterminer le degré de parenté génétique de ces agents et d'identifier les foyers provenant d'une même source. Les auteurs décrivent trois foyers récents d'infections entériques humaines survenus dans plusieurs états des États-Unis et soulignent à quel point l'exercice d'une surveillance sanitaire intégrée a été déterminant pour la détection de ces foyers et la mise en œuvre d'une réponse appropriée. Un partage accru d'informations entre les laboratoires et les épidémiologistes de santé publique et animale aux niveaux local, national, régional et international pourrait contribuer à améliorer la surveillance des menaces émergentes pesant sur la santé animale et humaine et à mettre en œuvre de nouvelles modalités de prévention.


En el tracto intestinal de muchos animales, entre ellos ganado, mascotas, pequeños mamíferos o reptiles, puede haber patógenos intestinales como salmonelas no tifoideas, Campylobacter o Escherichia coli. A menudo los animales parecen sanos, pese a lo cual las personas pueden infectarse por contacto directo o indirecto con ellos, lo que da lugar a una considerable carga de morbilidad. Se calcula que, de los 3,2 millones de casos de enfermedad que estos patógenos intestinales causan al año en los EE. UU., un 14% es atribuible al contacto con animales. La vigilancia de patógenos intestinales que se practica en los EE. UU. incluye la compilación e interpretación de datos tanto epidemiológicos como de laboratorio. En opinión de los autores, sin embargo, es preciso que la obtención y el análisis de datos respondan a un planteamiento de colaboración multisectorial y transdisciplinar ­ esto es, a la lógica de Una sola salud ­ que abarque todos los niveles. Los autores apuntan además que el futuro de la vigilancia de las enfermedades intestinales pasa por el desarrollo de tecnologías más eficaces de detección y caracterización de patógenos, como la secuenciación genómica o la metagenómica. En particular, el uso de la secuenciación de genomas completos para comparar entre sí las secuencias genéticas de patógenos intestinales presentes en personas, alimentos, animales y el medio ambiente puede ayudar a predecir la aparición de resistencias a los antimicrobianos en estos patógenos, determinar su parentesco genético e identificar brotes vinculados con un origen común. Los autores, tras describir tres recientes brotes de enfermedad intestinal humana ligados al contacto con animales que afectaron a varios estados de los EE. UU., explican la función esencial que cumplió la vigilancia integrada de enfermedades para detectar esos brotes y responder a ellos. El intercambio de más datos entre los laboratorios de salud pública y sanidad animal y los epidemiólogos a escala local, nacional, regional e internacional puede ser de ayuda para mejorar la vigilancia de amenazas sanitarias y zoosanitarias emergentes y abrir nuevas posibilidades de prevención.


Subject(s)
Disease Outbreaks , One Health , Animals , Disease Outbreaks/veterinary , Humans , Laboratories , Public Health , United States/epidemiology , Whole Genome Sequencing/veterinary
2.
Foodborne Pathog Dis ; 9(7): 638-45, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22755514

ABSTRACT

Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment, and ceftriaxone, an extended-spectrum cephalosporin (ESC), is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in ESC resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded bla(CMY) ß-lactamase. In 2009, we identified 47 ESC-resistant bla(CMY)-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of bla(CMY), determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the bla(CMY) plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing (pMLST). All 47 bla(CMY) genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred bla(CMY)-associated resistance. Six were IncA/C plasmids that carried additional resistance genes. pMLST of the IncI1-bla(CMY) plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among bla(CMY)-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of bla(CMY) on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and is likely not the result of clonal expansion.


Subject(s)
Cephalosporin Resistance/genetics , Cephalosporins/pharmacology , Meat/microbiology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Adult , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , DNA, Bacterial/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Female , Genetic Variation , Humans , Male , Microbial Sensitivity Tests , Multilocus Sequence Typing/methods , Plasmids , Salmonella Food Poisoning/microbiology , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , United States , beta-Lactamases/metabolism
3.
Foodborne Pathog Dis ; 3(1): 9-19, 2006.
Article in English | MEDLINE | ID: mdl-16602975

ABSTRACT

PulseNet USA is the molecular surveillance network for foodborne infections in the United States. Since its inception in 1996, it has been instrumental in detection, investigation and control of numerous outbreaks caused by Shiga toxin-producing Escherichia coli O157:[H7] (STEC O157), Salmonella enterica, Listeria monocytogenes, Shigella spp., and Campylobacter. This paper describes the current status of the network, including the methodologies used and its future possibilities. The currently preferred subtyping method in the network is pulsed-field gel electrophoresis (PFGE), a proven highly discriminatory molecular subtyping method. New simpler sequencebased subtyping methods are under development and validation to complement and eventually replace PFGE. PulseNet is essentially a cluster detection network, but the data in the system will now also be used in attribution analyses of sporadic infections. The PulseNet platform will also be used as a primary tool in preparedness and response to acts of food bioterrorism.


Subject(s)
DNA, Bacterial/analysis , Electrophoresis, Gel, Pulsed-Field/methods , Food Microbiology , Public Health , Bacterial Typing Techniques , Bioterrorism/prevention & control , Campylobacter/classification , Campylobacter/isolation & purification , Databases, Factual , Disease Outbreaks , Escherichia coli O157/classification , Escherichia coli O157/isolation & purification , Humans , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Population Surveillance , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Shigella/classification , Shigella/isolation & purification , United States
4.
Med Sci Sports Exerc ; 32(7): 1276-80, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10912893

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the effects of front suspension (FS) and dual suspension (DS) mountain bike designs on time-trial performance and physiological responses during uphill cycling on a paved- and off-road course. METHODS: Six trained male cyclists (35.6 +/- 9 yr, 76.9 +/- 8.8 kg, VO2 peak 58.4 +/- 5.6 mL x kg(-1) x min-1)) were timed using both suspension systems on an uphill paved course (1.62 km, 183-m elevation gain) and an uphill off-road course (1.38 km, 123-m elevation gain). During the field trials, VO2 was monitored continuously with a KB1-C portable gas analyzer, and power output with an SRM training system. RESULTS: On the paved course, total ride time on FS (10.4 +/- 0.7 min) and DS (10.4 +/- 0.8 min) was not different (P > 0.05). Similarly, total ride time on the off-road course was not significantly different on the FS bike (8.3 +/- 0.7 min) versus the DS bike (8.4 +/- 1.1 min). For each of the course conditions, there was no significant difference between FS and DS in average minute-by-minute VO2, whether expressed in absolute (ABS; L x min(-1)) or relative (REL; mL x [kg body wt +/- kg bike wt(-1)] x min(-1) values. Average power output (W) was significantly lower for ABS FS versus DS (266.1 +/- 61.6 W vs 341.9 +/- 61.1 W, P < 0.001) and REL FS versus DS (2.90 +/- 0.55 W x kg(-1) vs 3.65 +/- 0.53 W x kg(-1), P < 0.001) during the off-road trials. Power output on the paved course was also significantly different for ABS FS versus DS (266.6 +/- 52 W vs 345.4 +/- 53.4 W, P < 0.001) and REL FS versus DS (2.99 +/- 0.55 W x kg(-1) vs 3.84 +/- 0.54 W x kg(-1), P < 0.001). CONCLUSION: We conclude that despite significant differences in power output between FS and DS mountain bike systems during uphill cycling, these differences do not translate into significant differences in oxygen cost or time to complete either a paved- or off-road course.


Subject(s)
Bicycling/physiology , Oxygen Consumption , Adult , Equipment Design , Humans , Male , Physical Endurance
SELECTION OF CITATIONS
SEARCH DETAIL
...