Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 42(10): 1488-1492, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19442977

ABSTRACT

It is generally accepted that force enhancement in skeletal muscles increases with increasing stretch magnitudes. However, this property has not been tested across supra-physiological stretch magnitudes and different muscle lengths, thus it is not known whether this is a generic property of skeletal muscle, or merely a property that holds for small stretch magnitudes within the physiological range. Six cat soleus muscles were actively stretched with magnitudes varying from 3 to 24 mm at three different parts of the force-length relationship to test the hypothesis that force enhancement increases with increasing stretch magnitude, independent of muscle length. Residual force enhancement increased consistently with stretch amplitudes on the descending limb of the force-length relationship up to a threshold value, after which it reached a plateau. Force enhancement did not increase with stretch amplitude on the ascending limb of the force-length relationship. Passive force enhancement was observed for all test conditions, and paralleled the behavior of the residual force enhancement. Force enhancement increased with stretch magnitude when stretching occurred at lengths where there was natural passive force within the muscle. These results suggest that force enhancement does not increase unconditionally with increasing stretch magnitude, as is generally accepted, and that increasing force enhancement with stretch appears to be tightly linked to that part of the force-length relationship where there is naturally occurring passive force.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Cats , Electric Stimulation , Isometric Contraction/physiology , Models, Biological , Muscle Fibers, Skeletal/physiology , Sarcomeres/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...