Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Geroscience ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789832

ABSTRACT

Aging is a public health concern with an ever-increasing magnitude worldwide. An array of neuroscience-based approaches like transcranial direct current stimulation (tDCS) and cognitive training have garnered attention in the last decades to ameliorate the effects of cognitive aging in older adults. This study evaluated the effects of 3 months of bilateral tDCS over the frontal cortices with multimodal cognitive training on working memory capacity. Two hundred ninety-two older adults without dementia were allocated to active or sham tDCS paired with cognitive training. These participants received repeated sessions of bilateral tDCS over the bilateral frontal cortices, combined with multimodal cognitive training. Working memory capacity was assessed with the digit span forward, backward, and sequencing tests. No baseline differences between active and sham groups were observed. Multiple linear regressions indicated more improvement of the longest digit span backward from baseline to post-intervention (p = 0.021) and a trend towards greater improvement (p = 0.056) of the longest digit span backward from baseline to 1 year in the active tDCS group. No significant between-group changes were observed for digit span forward or digit span sequencing. The present results provide evidence for the potential for tDCS paired with cognitive training to remediate age-related declines in working memory capacity. These findings are sourced from secondary outcomes in a large randomized clinical trial and thus deserve future targeted investigation in older adult populations.

2.
Brain Stimul ; 17(2): 283-311, 2024.
Article in English | MEDLINE | ID: mdl-38438012

ABSTRACT

BACKGROUND: Pharmacological interventions for depression and anxiety in older adults often have significant side effects, presenting the need for more tolerable alternatives. Transcranial direct current stimulation (tDCS) is a promising non-pharmacological intervention for depression in clinical populations. However, its effects on depression and anxiety symptoms, particularly in older adults from the general public, are understudied. OBJECTIVE: We conducted a secondary analysis of the Augmenting Cognitive Training in Older Adults (ACT) trial to assess tDCS efficacy in reducing psychological symptoms in older adults. We hypothesized that active stimulation would yield greater reductions in depression and state anxiety compared to sham post-intervention and at the one-year follow-up. We also explored tDCS effects in subgroups characterized by baseline symptom severity. METHODS: A sample of 378 older adults recruited from the community completed a 12-week tDCS intervention with cognitive or education training. Electrodes were placed at F3/F4, and participants received active or sham tDCS during training sessions. We assessed the association between tDCS group and changes in depression, state anxiety, and trait anxiety from baseline to post-intervention and one-year controlling for covariates. RESULTS: The active tDCS group demonstrated greater reductions in depression and state anxiety compared to sham post-intervention, particularly in individuals with mild depression and moderate/severe state anxiety at baseline. Furthermore, the active tDCS group with moderate/severe state anxiety maintained greater symptom reductions at one-year. CONCLUSIONS: tDCS effectively reduced depression and state anxiety symptoms in a large sample of older adults. These findings highlight the importance of considering symptom severity when identifying those who may benefit most from this intervention.


Subject(s)
Anxiety , Depression , Transcranial Direct Current Stimulation , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Anxiety/therapy , Anxiety/etiology , Cognitive Training , Depression/therapy , Transcranial Direct Current Stimulation/methods , Treatment Outcome
3.
Front Aging Neurosci ; 16: 1349449, 2024.
Article in English | MEDLINE | ID: mdl-38524117

ABSTRACT

Hippocampal volume is particularly sensitive to the accumulation of total brain white matter hyperintensity volume (WMH) in aging, but how the regional distribution of WMH volume differentially impacts the hippocampus has been less studied. In a cohort of 194 healthy older adults ages 50-89, we used a multivariate statistical method, the Scaled Subprofile Model (SSM), to (1) identify patterns of regional WMH differences related to left and right hippocampal volumes, (2) examine associations between the multimodal neuroimaging covariance patterns and demographic characteristics, and (3) investigate the relation of the patterns to subjective and objective memory in healthy aging. We established network covariance patterns of regional WMH volume differences associated with greater left and right hippocampal volumes, which were characterized by reductions in left temporal and right parietal WMH volumes and relative increases in bilateral occipital WMH volumes. Additionally, we observed lower expression of these hippocampal-related regional WMH patterns were significantly associated with increasing age and greater subjective memory complaints, but not objective memory performance in this healthy older adult cohort. Our findings indicate that, in cognitively healthy older adults, left and right hippocampal volume reductions were associated with differences in the regional distribution of WMH volumes, which were exacerbated by advancing age and related to greater subjective memory complaints. Multivariate network analyses, like SSM, may help elucidate important early effects of regional WMH volume on brain and cognitive aging in healthy older adults.

4.
J Int Neuropsychol Soc ; : 1-11, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38515367

ABSTRACT

OBJECTIVE: White matter hyperintensity (WMH) volume is a neuroimaging marker of lesion load related to small vessel disease that has been associated with cognitive aging and Alzheimer's disease (AD) risk. METHOD: The present study sought to examine whether regional WMH volume mediates the relationship between APOE ε4 status, a strong genetic risk factor for AD, and cognition and if this association is moderated by age group differences within a sample of 187 healthy older adults (APOE ε4 status [carrier/non-carrier] = 56/131). RESULTS: After we controlled for sex, education, and vascular risk factors, ANCOVA analyses revealed significant age group by APOE ε4 status interactions for right parietal and left temporal WMH volumes. Within the young-old group (50-69 years), ε4 carriers had greater right parietal and left temporal WMH volumes than non-carriers. However, in the old-old group (70-89 years), right parietal and left temporal WMH volumes were comparable across APOE ε4 groups. Further, within ε4 non-carriers, old-old adults had greater right parietal and left temporal WMH volumes than young-old adults, but there were no significant differences across age groups in ε4 carriers. Follow-up moderated mediation analyses revealed that, in the young-old, but not the old-old group, there were significant indirect effects of ε4 status on memory and executive functions through left temporal WMH volume. CONCLUSIONS: These findings suggest that, among healthy young-old adults, increased left temporal WMH volume, in the context of the ε4 allele, may represent an early marker of cognitive aging with the potential to lead to greater risk for AD.

5.
Geroscience ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457007

ABSTRACT

Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there was variability in the achievement of cognitive gains after cognitive training across studies, suggesting moderating factors. Learning trials of visual and verbal learning tasks recruit similar cognitive abilities and have overlapping neural correlates with speed-of-processing/working memory tasks and therefore could serve as potential moderators of cognitive training gains. This study explored the association between the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) learning with a commercial UFOV task called Double Decision. Through a secondary analysis of a clinical trial, we assessed the moderation of HVLT-R and BVMT-R learning on Double Decision improvement after a 3-month speed-of-processing/attention and working memory cognitive training intervention in a sample of 75 cognitively healthy older adults. Multiple linear regressions showed that better baseline Double Decision performance was significantly associated with better BVMT-R learning (ß = - .303). This association was not significant for HVLT-R learning (ß = - .142). Moderation analysis showed that those with poorer BVMT-R learning improved the most on the Double Decision task after cognitive training. This suggests that healthy older adults who perform below expectations on cognitive tasks related to the training task may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes and efficacy of the intervention.

6.
Geroscience ; 46(3): 3325-3339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38265579

ABSTRACT

Declines in several cognitive domains, most notably processing speed, occur in non-pathological aging. Given the exponential growth of the older adult population, declines in cognition serve as a significant public health issue that must be addressed. Promising studies have shown that cognitive training in older adults, particularly using the useful field of view (UFOV) paradigm, can improve cognition with moderate to large effect sizes. Additionally, meta-analyses have found that transcranial direct current stimulation (tDCS), a non-invasive form of brain stimulation, can improve cognition in attention/processing speed and working memory. However, only a handful of studies have looked at concomitant tDCS and cognitive training, usually with short interventions and small sample sizes. The current study assessed the effect of a tDCS (active versus sham) and a 3-month cognitive training intervention on task-based functional connectivity during completion of the UFOV task in a large older adult sample (N = 153). We found significant increased functional connectivity between the left and right pars triangularis (the ROIs closest to the electrodes) following active, but not sham tDCS. Additionally, we see trending behavioral improvements associated with these functional connectivity changes in the active tDCS group, but not sham. Collectively, these findings suggest that tDCS and cognitive training can be an effective modulator of task-based functional connectivity above and beyond a cognitive training intervention alone.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Aged , Cognitive Training , Cognition/physiology , Memory, Short-Term/physiology , Prefrontal Cortex
7.
Geroscience ; 45(5): 3079-3093, 2023 10.
Article in English | MEDLINE | ID: mdl-37814198

ABSTRACT

Limited research exists on the association between resting-state functional network connectivity in the brain and learning and memory processes in advanced age. This study examined within-network connectivity of cingulo-opercular (CON), frontoparietal control (FPCN), and default mode (DMN) networks, and verbal and visuospatial learning and memory in older adults. Across domains, we hypothesized that greater CON and FPCN connectivity would associate with better learning, and greater DMN connectivity would associate with better memory. A total of 330 healthy older adults (age range = 65-89) underwent resting-state fMRI and completed the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) in a randomized clinical trial. Total and delayed recall scores were assessed from baseline data, and a learning ratio calculation was applied to participants' scores. Average CON, FPCN, and DMN connectivity values were obtained with CONN Toolbox. Hierarchical regressions controlled for sex, race, ethnicity, years of education, and scanner site, as this was a multi-site study. Greater within-network CON connectivity was associated with better verbal learning (HVLT-R Total Recall, Learning Ratio), visuospatial learning (BVMT-R Total Recall), and visuospatial memory (BVMT-R Delayed Recall). Greater FPCN connectivity was associated with better visuospatial learning (BVMT-R Learning Ratio) but did not survive multiple comparison correction. DMN connectivity was not associated with these measures of learning and memory. CON may make small but unique contributions to learning and memory across domains, making it a valuable target in future longitudinal studies and interventions to attenuate memory decline. Further research is necessary to understand the role of FPCN in learning and memory.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Aged , Aged, 80 and over , Brain/diagnostic imaging , Memory , Learning , Mental Recall
8.
Brain Stimul ; 16(3): 904-917, 2023.
Article in English | MEDLINE | ID: mdl-37245842

ABSTRACT

BACKGROUND: There is a need for effective interventions to stave off cognitive decline in older adults. Cognitive training has variably produced gains in untrained tasks and daily functioning. Combining cognitive training with transcranial direct current stimulation (tDCS) may augment cognitive training effects; however, this approach has yet to be tested on a large-scale. OBJECTIVE: This paper will present the primary findings of the Augmenting Cognitive Training in Older Adults (ACT) clinical trial. We hypothesize that receiving active stimulation with cognitive training will result in greater improvements on an untrained fluid cognition composite compared to sham following intervention. METHODS: 379 older adults were randomized, and 334 were included in intent-to-treat analyses for a 12-week multidomain cognitive training and tDCS intervention. Active or sham tDCS was administered at F3/F4 during cognitive training daily for two weeks then weekly for 10 weeks. To assess the tDCS effect, we fitted regression models for changes in NIH Toolbox Fluid Cognition Composite scores immediately following intervention and one year from baseline controlling for covariates and baseline scores. RESULTS: Across the entire sample, there were improvements in NIH Toolbox Fluid Cognition Composite scores immediately post-intervention and one year following baseline; however, there were no significant tDCS group effects at either timepoint. CONCLUSIONS: The ACT study models rigorous, safe administration of a combined tDCS and cognitive training intervention in a large sample of older adults. Despite potential evidence of near-transfer effects, we failed to demonstrate an additive benefit of active stimulation. Future analyses will continue to assess the intervention's efficacy by examining additional measures of cognition, functioning, mood, and neural markers.


Subject(s)
Cognitive Dysfunction , Transcranial Direct Current Stimulation , Humans , Aged , Cognitive Training , Cognition/physiology , Cognitive Dysfunction/therapy
9.
Geroscience ; 45(1): 293-309, 2023 02.
Article in English | MEDLINE | ID: mdl-35948860

ABSTRACT

Declines in processing speed performance occur in aging and are a critical marker of functional independence in older adults. Numerous studies suggest that Useful Field of View (UFOV) training may ameliorate cognitive decline in older adults. Despite its efficacy, little is known about the neural correlates of this task. The current study is the first to investigate the coherence of functional connectivity during UFOV task completion. A total of 336 participants completed the UFOV task while undergoing task-based functional magnetic resonance imaging (fMRI). Ten spherical regions of interest (ROIs), selected a priori, were created based on regions with the greatest peak BOLD activation patterns in the UFOV fMRI task and regions that have been shown to significantly relate to UFOV fMRI task performance. We used a weighted ROI-to-ROI connectivity analysis to model task-specific functional connectivity strength between these a priori selected ROIs. We found that our UFOV fMRI network was functionally connected during task performance and was significantly associated to UFOV fMRI task performance. Within-network connectivity of the UFOV fMRI network showed comparable or better predictive power in accounting for UFOV accuracy compared to 7 resting state networks, delineated by Yeo and colleagues. Finally, we demonstrate that the within-network connectivity of UFOV fMRI task accounted for scores on a measure of "near transfer", the Double Decision task, better than the aforementioned resting state networks. Our data elucidate functional connectivity patterns of the UFOV fMRI task. This may assist in future targeted interventions that aim to improve synchronicity within the UFOV fMRI network.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Aged , Magnetic Resonance Imaging/methods , Aging/physiology , Task Performance and Analysis
10.
Neurobiol Aging ; 121: 129-138, 2023 01.
Article in English | MEDLINE | ID: mdl-36436304

ABSTRACT

Homocysteine (Hcy) is a vascular risk factor associated with cognitive impairment and cerebrovascular disease but has also been implicated in Alzheimer's disease (AD). Using multivariate Scaled Subprofile Model (SSM) analysis, we sought to identify a network pattern in structural neuroimaging reflecting the regionally distributed association of plasma Hcy with subcortical gray matter (SGM) volumes and its relation to other health risk factors and cognition in 160 healthy older adults, ages 50-89. We identified an SSM Hcy-SGM pattern that was characterized by bilateral hippocampal and nucleus accumbens volume reductions with relative volume increases in bilateral caudate, pallidum, and putamen. Greater Hcy-SGM pattern expression was associated with greater white matter hyperintensity (WMH) volume, older age, and male sex, but not with other vascular and AD-related risk factors. Mediation analyses revealed that age predicted WMH volume, which predicted Hcy-SGM pattern expression, which, in turn, predicted cognitive processing speed performance. These findings suggest that the multivariate SSM Hcy-SGM pattern may be indicative of cognitive aging, reflecting a potential link between vascular health and cognitive dysfunction in healthy older adults.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Healthy Aging , White Matter , Male , Humans , Aged , Aged, 80 and over , White Matter/diagnostic imaging , White Matter/pathology , Homocysteine , Neuropsychological Tests , Magnetic Resonance Imaging , Brain/pathology , Atrophy/pathology , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Alzheimer Disease/pathology
11.
Front Aging Neurosci ; 14: 999107, 2022.
Article in English | MEDLINE | ID: mdl-36506467

ABSTRACT

Background: Older adults are at a greater risk for contracting and experiencing severe illness from COVID-19 and may be further affected by pandemic-related precautions (e.g., social distancing and isolation in quarantine). However, the longitudinal impact of the COVID-19 pandemic on older adults is unclear. The current study examines changes in health behaviors, psychosocial factors, and cognitive functioning in a large sample of older adults using a pre-pandemic baseline and longitudinal follow-up throughout 9 months of the COVID-19 pandemic. Methods: One hundred and eighty-nine older adults (ages 65-89) were recruited from a multisite clinical trial to complete additional virtual assessments during the COVID-19 pandemic. Mixed effects models evaluated changes in health behaviors, psychosocial factors, and cognitive functioning during the pandemic compared to a pre-pandemic baseline and over the course of the pandemic (i.e., comparing the first and last COVID-19 timepoints). Results: Compared to their pre-pandemic baseline, during the pandemic, older adults reported worsened sleep quality, perceived physical health and functioning, mental health, slight increases in depression and apathy symptoms, reduced social engagement/perceived social support, but demonstrated better performance on objective cognitive tasks of attention and working memory. Throughout the course of the pandemic, these older adults reported continued worsening of perceived physical health and function, fewer depression symptoms, and they demonstrated improved cognitive performance. It is important to note that changes on self-report mood measures and cognitive performance were relatively small regarding clinical significance. Education largely served as a protective factor, such that greater years of education was generally associated with better outcomes across domains. Conclusions: The present study provides insights into the longitudinal impact of the COVID-19 pandemic on health behaviors, psychosocial factors, and cognitive functioning in a population disproportionately affected by the virus. Replicating this study design in a demographically representative older adult sample is warranted to further inform intervention strategies targeting older adults negatively impacted by the COVID-19 pandemic.

12.
Geroscience ; 44(2): 1011-1027, 2022 04.
Article in English | MEDLINE | ID: mdl-35258771

ABSTRACT

Prior randomized control trials have shown that cognitive training interventions resulted in improved proximal task performance, improved functioning of activities of daily living, and reduced dementia risk in healthy older adults. Neural correlates implicated in cognitive training include hub brain regions of higher-order resting state networks including the default mode network, dorsal attention network, frontoparietal control network, and cingulo-opercular network. However, little is known about resting state network change after cognitive training, or the relation between functional brain changes and improvement in proximal task performance. We assessed the 1) change in proximal task performance, 2) change in higher-order resting state network connectivity via functional magnetic resonance imaging, and 3) association between these variables after a multidomain attention/speed-of-processing and working memory randomized control trial in a sample of 58 healthy older adults. Participants in the cognitive training group improved significantly on seven out of eight training tasks immediately after the training intervention with the largest magnitude of improvement in a divided attention/speed-of-processing task, the Double Decision task. Only the frontoparietal control network had significantly strengthened connectivity in the cognitive training group at the post-intervention timepoint. Lastly, higher frontoparietal control network connectivity was associated with improved Double Decision task performance after training in the cognitive training group. These findings show that the frontoparietal control network may strengthen after multidomain cognitive training interventions, and this network may underlie improvements in divided attention/speed-of-processing proximal improvement.


Subject(s)
Activities of Daily Living , Cognition , Aged , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Pathways
13.
Neuroimage Rep ; 2(2)2022 Jun.
Article in English | MEDLINE | ID: mdl-37377763

ABSTRACT

Minimizing head motion during functional magnetic resonance imaging (fMRI) is important for maintaining the integrity of neuroimaging data. While there are a variety of techniques to control for head motion, oftentimes, individuals with excessive in-scanner motion are removed from analyses. Movement in the scanner tends to increase with age; however, the cognitive profile of these "high-movers" in older adults has yet to be explored. This study aimed to assess the association between in-scanner head motion (i.e., number of "invalid scans" flagged as motion outliers) and cognitive functioning (e.g., executive functioning, processing speed, and verbal memory performance) in a sample of 282 healthy older adults. Spearman's Rank-Order correlations showed that a higher number of invalid scans was significantly associated with poorer performance on tasks of inhibition and cognitive flexibility and with older age. Since performance in these domains tend to decline as a part of the non-pathological aging process, these findings raise concerns regarding the potential systematic exclusion due to motion of older adults with lower executive functioning in neuroimaging samples. Future research should continue to explore prospective motion correction techniques to better ensure the collection of quality neuroimaging data without excluding informative participants from the sample.

14.
Cereb Cortex ; 32(9): 1993-2012, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34541604

ABSTRACT

Declines in processing speed performance occur in aging and are a critical marker of functional independence in older adults. Studies suggest that Useful Field of View (UFOV) training may ameliorate cognitive decline. Despite its efficacy, little is known about the neural correlates of this task. Within the current study, 233 healthy older adults completed a UFOV-based task while undergoing functional magnetic resonance imaging (fMRI). During the "stimulus" portion of this task, participants must identify a target in the center of the screen and the location of a target in the periphery, among distractors. During the "probe" portion, participants must decide if the object in the center and the location of the target in the periphery were identical to the "stimulus" screen. Widespread bilateral whole-brain activation was observed when activation patterns of the "probe" contrast were subtracted from the "stimulus" contrast. Conversely, the subtraction of "stimulus" from "probe" was associated with discrete activation patterns consisting of 13 clusters. Additionally, when evaluating the variance associated with task accuracy, specific subregions were identified that may be critical for task performance. Our data elucidate the functional neural correlates of a UFOV-based task, a task used in both cognitive training paradigms and assessment of function.


Subject(s)
Cognition , Magnetic Resonance Imaging , Aged , Aging/physiology , Brain/diagnostic imaging , Cognition/physiology , Humans , Task Performance and Analysis
15.
Geroscience ; 44(1): 131-145, 2022 02.
Article in English | MEDLINE | ID: mdl-34431043

ABSTRACT

Speed-of-processing abilities decline with age yet are important in performing instrumental activities of daily living. The useful field of view, or Double Decision task, assesses speed-of-processing and divided attention. Performance on this task is related to attention, executive functioning, and visual processing abilities in older adults, and poorer performance predicts more motor vehicle accidents in the elderly. Cognitive training in this task reduces risk of dementia. Structural and functional neural correlates of this task suggest that higher-order resting state networks may be associated with performance on the Double Decision task, although this has never been explored. This study aimed to assess the association of within-network connectivity of the default mode network, dorsal attention network, frontoparietal control network, and cingulo-opercular network with Double Decision task performance, and subcomponents of this task in a sample of 267 healthy older adults. Multiple linear regressions showed that connectivity of the cingulo-opercular network is associated with visual speed-of-processing and divided attention subcomponents of the Double Decision task. Cingulo-opercular network and frontoparietal control network connectivity is associated with Double Decision task performance. Stronger connectivity is related to better performance in all cases. These findings confirm the unique role of the cingulo-opercular network in visual attention and sustained divided attention. Frontoparietal control network connectivity, in addition to cingulo-opercular network connectivity, is related to Double Decision task performance, a task implicated in reduced dementia risk. Future research should explore the role these higher-order networks play in reduced dementia risk after cognitive intervention using the Double Decision task.


Subject(s)
Activities of Daily Living , Magnetic Resonance Imaging , Aged , Cognition , Humans , Neural Pathways , Visual Perception
16.
Geroscience ; 44(2): 847-866, 2022 04.
Article in English | MEDLINE | ID: mdl-34950997

ABSTRACT

Executive function is a cognitive domain that typically declines in non-pathological aging. Two cognitive control networks that are vulnerable to aging-the cingulo-opercular (CON) and fronto-parietal control (FPCN) networks-play a role in various aspects of executive functioning. However, it is unclear how communication within these networks at rest relates to executive function subcomponents in older adults. This study examines the associations between CON and FPCN connectivity and executive function performance in 274 older adults across working memory, inhibition, and set-shifting tasks. Average CON connectivity was associated with better working memory, inhibition, and set-shifting performance, while average FPCN connectivity was associated solely with working memory. CON region of interest analyses revealed significant connections with classical hub regions (i.e., anterior cingulate and anterior insula) for each task, language regions for verbal working memory, right hemisphere dominance for inhibitory control, and widespread network connections for set-shifting. FPCN region of interest analyses revealed largely right hemisphere fronto-parietal connections important for working memory and a few temporal lobe connections for set-shifting. These findings characterize differential brain-behavior relationships between cognitive control networks and executive function in aging. Future research should target these networks for intervention to potentially attenuate executive function decline in older adults.


Subject(s)
Brain Mapping , Executive Function , Brain , Executive Function/physiology , Magnetic Resonance Imaging , Memory, Short-Term
17.
Hippocampus ; 31(5): 469-480, 2021 05.
Article in English | MEDLINE | ID: mdl-33586848

ABSTRACT

While total white matter hyperintensity (WMH) volume on magnetic resonance imaging (MRI) has been associated with hippocampal atrophy, less is known about how the regional distribution of WMH volume may differentially affect the hippocampus in healthy aging. Additionally, apolipoprotein E (APOE) ε4 carriers may be at an increased risk for greater WMH volumes and hippocampal atrophy in aging. The present study sought to investigate whether regional WMH volume mediates the relationship between age and hippocampal volume and if this association is moderated by APOE ε4 status in a group of 190 cognitively healthy adults (APOE ε4 status [carrier/non-carrier] = 59/131), ages 50-89. Analyses revealed that temporal lobe WMH volume significantly mediated the relationship between age and average bilateral hippocampal volume, and this effect was moderated by APOE ε4 status (-0.020 (SE = 0.009), 95% CI, [-0.039, -0.003]). APOE ε4 carriers, but not non-carriers, showed negative indirect effects of age on hippocampal volume through temporal lobe WMH volume (APOE ε4 carriers: -0.016 (SE = 0.007), 95% CI, [-0.030, -0.003]; APOE ε4 non-carriers: .005 (SE = 0.006), 95% CI, [-0.006, 0.017]). These findings remained significant after additionally adjusting for sex, years of education, hypertension status and duration, cholesterol status, diabetes status, Body Mass Index, history of smoking, and the Wechsler Adult Intelligence Scale-IV Full Scale IQ. There were no significant moderated mediation effects for frontal, parietal, and occipital lobe WMH volumes, with or without covariates. Our findings indicate that in cognitively healthy older adults, elevated WMH volume regionally localized to the temporal lobes in APOE ε4 carriers is associated with reduced hippocampal volume, suggesting greater vulnerability to brain aging and the risk for Alzheimer's disease.


Subject(s)
Alzheimer Disease , White Matter , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology
18.
Cereb Cortex ; 31(3): 1732-1743, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33188384

ABSTRACT

Age-related differences in dorsolateral prefrontal cortex (DLPFC) structure and function have each been linked to working memory. However, few studies have integrated multimodal imaging to simultaneously investigate relationships among structure, function, and cognition. We aimed to clarify how specifically DLPFC structure and function contribute to working memory in healthy older adults. In total, 138 participants aged 65-88 underwent 3 T neuroimaging and were divided into higher and lower groups based on a median split of in-scanner n-back task performance. Three a priori spherical DLPFC regions of interest (ROIs) were used to quantify blood-oxygen-level-dependent (BOLD) signal and FreeSurfer-derived surface area, cortical thickness, and white matter volume. Binary logistic regressions adjusting for age, sex, education, and scanner type revealed that greater left and right DLPFC BOLD signal predicted the probability of higher performing group membership (P values<.05). Binary logistic regressions also adjusting for total intracranial volume revealed left DLPFC surface area that significantly predicted the probability of being in the higher performing group (P = 0.017). The left DLPFC BOLD signal and surface area were not significantly associated and did not significantly interact to predict group membership (P values>.05). Importantly, this suggests BOLD signal and surface area may independently contribute to working memory performance in healthy older adults.


Subject(s)
Dorsolateral Prefrontal Cortex/physiology , Memory, Short-Term/physiology , Aged , Aged, 80 and over , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male
19.
Front Aging Neurosci ; 12: 576025, 2020.
Article in English | MEDLINE | ID: mdl-33240074

ABSTRACT

Cerebral white matter (WM) lesion load, as measured by white matter hyperintensity (WMH) volume with magnetic resonance imaging (MRI), has been associated with increasing age and cardiovascular risk factors, like hypertension. Physical sports activity (PSA) may play an important role in maintaining WM in the context of healthy aging. In 196 healthy older adults, we investigated whether participants reporting high levels of PSA (n = 36) had reduced total and regional WMH volumes compared to those reporting low levels of PSA (n = 160). Age group [young-old (YO) = 50-69 years; old-old (OO) = 70-89 years], PSA group, and age by PSA group interaction effects were tested, with sex, hypertension, and body mass index (BMI) as covariates. We found significant main effects for age group and age by PSA group interactions for total, frontal, temporal, and parietal WMH volumes. There were no main effects of PSA group on WMH volumes. The OO group with low PSA had greater total, frontal, temporal, and parietal WMH volumes than the YO with low PSA and OO with high PSA groups. WMH volumes for the YO and OO groups with high PSA were comparable. These findings indicate an age group difference in those with low PSA, with greater WMH volumes in older adults, which was not observed in those with high PSA. The results suggest that engaging in high levels of PSA may be an important lifestyle factor that can help to diminish WMH lesion load in old age, potentially reducing the impact of brain aging.

20.
Front Aging Neurosci ; 12: 593833, 2020.
Article in English | MEDLINE | ID: mdl-33250765

ABSTRACT

Objective: The association between hippocampal volume and memory is continuing to be characterized in healthy older adults. Prior research suggests smaller hippocampal volume in healthy older adults is associated with poorer episodic memory and processing speed, as well as working memory, verbal learning, and executive functioning as measured by the NIH Toolbox Fluid (Fluid Cognition Composite, FCC) and Crystalized Cognition Composites (CCC). This study aimed to replicate these findings and to evaluate the association between: (1) hippocampal asymmetry index and cognition; and (2) independent contributions of the left and right hippocampal volume and cognition in a large sample of healthy older adults. Participants and Methods: One-hundred and eighty-three healthy older adults (M age = 71.72, SD = 5.3) received a T1-weighted sequence on a 3T scanner. Hippocampal subfields were extracted using FreeSurfer 6.0 and combined to provide left, right, and total hippocampal volumes. FCC subtests include Dimensional Change Card Sort, Flanker Inhibitory Control and Attention, List Sorting, Picture Sequence Memory, and Pattern Comparison. CCC subtests include Picture Vocabulary and Oral Reading Recognition. Multiple linear regressions were performed predicting cognition composites from the total, left and right, and asymmetry of hippocampal volume, controlling for sex, education, scanner, and total intracranial volume. Multiple comparisons in primary analyses were corrected using a false discovery rate (FDR) of p < 0.05. Results: FCC scores were positively associated with total (ß = 0.226, FDR q = 0.044) and left (ß = 0.257, FDR q = 0.024) hippocampal volume. Within FCC, Picture Sequence Memory scores positively associated with total (ß = 0.284, p = 0.001) and left (ß = 0.98, p = 0.001) hippocampal volume. List Sorting scores were also positively associated with left hippocampal volume (ß = 0.189, p = 0.029). Conclusions: These results confirm previous research suggesting that bilateral hippocampal volume is associated with FCC, namely episodic memory. The present study also suggests the left hippocampal volume may be more broadly associated with both episodic and working memory. Studies should continue to investigate lateralized hippocampal contributions to aging processes to better identify predictors of cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL
...