Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649239

ABSTRACT

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Loci , Genome, Human , Human Embryonic Stem Cells , Mouse Embryonic Stem Cells , Animals , Cell Line , Humans , Mice
2.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31221560

ABSTRACT

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Subject(s)
Axons/pathology , Nerve Degeneration/pathology , Nerve Tissue Proteins/physiology , Animals , Axons/enzymology , Caspase 3/physiology , Cells, Cultured , Cytoskeletal Proteins , Enzyme Activation , Ganglia, Spinal/cytology , Ganglia, Spinal/embryology , Mice , Mice, Knockout , Nerve Degeneration/enzymology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/deficiency , Phosphorylation , Protein Processing, Post-Translational , Receptor, trkA/physiology , Sensory Receptor Cells/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...