Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic ; 25(1): e12927, 2024 01.
Article in English | MEDLINE | ID: mdl-38272446

ABSTRACT

Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.


Subject(s)
Protein Folding , Rare Diseases , Animals , Humans , Rare Diseases/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Endoplasmic Reticulum/metabolism , Mutation , Mammals/metabolism , Glucosyltransferases/metabolism
2.
bioRxiv ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37398215

ABSTRACT

Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity ("responsive mutant"). Here, we investigated the subcellular localisation of the human Trop-2 Q118E variant, which causes gelatinous droplike corneal dystrophy (GDLD). Compared with the wild type Trop-2, which is correctly localised at the plasma membrane, the Trop-2-Q118E variant is found to be heavily retained in the ER. Using Trop-2-Q118E, we tested UGGT modulation as a rescue-of-secretion therapeutic strategy for congenital rare disease caused by responsive mutations in genes encoding secreted glycoproteins. We investigated secretion of a EYFP-fusion of Trop-2-Q118E by confocal laser scanning microscopy. As a limiting case of UGGT inhibition, mammalian cells harbouring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 gene expressions were used. The membrane localisation of the Trop-2-Q118E-EYFP mutant was successfully rescued in UGGT1-/- and UGGT1/2-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation constitutes a novel therapeutic strategy for the treatment of Trop-2-Q118E associated GDLD, and it encourages the testing of modulators of ER glycoprotein folding Quality Control (ERQC) as broad-spectrum rescueof-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.

3.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37493353

ABSTRACT

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Subject(s)
Computational Biology , Proteins , Protein Conformation , Models, Molecular , Computational Biology/methods , Proteins/chemistry
4.
Methods Mol Biol ; 2652: 79-118, 2023.
Article in English | MEDLINE | ID: mdl-37093471

ABSTRACT

High-quality protein samples are an essential requirement of any structural biology experiment. However, producing high-quality protein samples, especially for membrane proteins, is iterative and time-consuming. Membrane protein structural biology remains challenging due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Overcoming the twin problems of compositional and conformational instability requires an understanding of protein size, thermostability, and sample heterogeneity, while a parallelized approach enables multiple conditions to be analyzed simultaneously. We present a method that couples the high-throughput cloning of membrane protein constructs with the transient expression of membrane proteins in human embryonic kidney (HEK) cells and rapid identification of the most suitable conditions for subsequent structural biology applications. This rapid screening method is used routinely in the Membrane Protein Laboratory at Diamond Light Source to identify the most successful protein constructs and conditions while excluding those that will not work. The 96-well format is easily adaptable to enable the screening of constructs, pH, salts, encapsulation agents, and other additives such as lipids.


Subject(s)
Mammals , Membrane Proteins , Animals , Humans , Membrane Proteins/metabolism , Mammals/metabolism
5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34321357

ABSTRACT

Many bacteria, including the major human pathogen Pseudomonas aeruginosa, are naturally found in multicellular, antibiotic-tolerant biofilm communities, in which cells are embedded in an extracellular matrix of polymeric molecules. Cell-cell interactions within P. aeruginosa biofilms are mediated by CdrA, a large, membrane-associated adhesin present in the extracellular matrix of biofilms, regulated by the cytoplasmic concentration of cyclic diguanylate. Here, using electron cryotomography of focused ion beam-milled specimens, we report the architecture of CdrA molecules in the extracellular matrix of P. aeruginosa biofilms at intact cell-cell junctions. Combining our in situ observations at cell-cell junctions with biochemistry, native mass spectrometry, and cellular imaging, we demonstrate that CdrA forms an extended structure that projects from the outer membrane to tether cells together via polysaccharide binding partners. We go on to show the functional importance of CdrA using custom single-domain antibody (nanobody) binders. Nanobodies targeting the tip of functional cell-surface CdrA molecules could be used to inhibit bacterial biofilm formation or disrupt preexisting biofilms in conjunction with bactericidal antibiotics. These results reveal a functional mechanism for cell-cell interactions within bacterial biofilms and highlight the promise of using inhibitors targeting biofilm cell-cell junctions to prevent or treat problematic, chronic bacterial infections.


Subject(s)
Adhesins, Bacterial/metabolism , Biofilms/growth & development , Pseudomonas aeruginosa/physiology , Adhesins, Bacterial/genetics , Bacterial Adhesion , Cell Membrane , Extracellular Matrix , Gene Expression Regulation, Bacterial , Single-Domain Antibodies
SELECTION OF CITATIONS
SEARCH DETAIL
...