Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New J Phys ; 23(10)2021.
Article in English | MEDLINE | ID: mdl-38487593

ABSTRACT

For the past two and a half decades, anomalous heating of trapped ions from nearby electrode surfaces has continued to demonstrate unexpected results. Caused by electric-field noise, this heating of the ions' motional modes remains an obstacle for scalable quantum computation with trapped ions. One of the anomalous features of this electric-field noise is the reported nonmonotonic behavior in the heating rate when a trap is incrementally cleaned by ion bombardment. Motivated by this result, the present work reports on a surface analysis of a sample ion-trap electrode treated similarly with incremental doses of Ar+ ion bombardment. Kelvin probe force microscopy and x-ray photoelectron spectroscopy were used to investigate how the work functions on the electrode surface vary depending on the residual contaminant coverage between each treatment. It is shown that the as-fabricated Au electrode is covered with a hydrocarbon film that is modified after the first treatment, resulting in work functions and core-level binding energies that resemble that of atomic-like carbon on Au. Changes in the spatial distribution of work functions with each treatment, combined with a suggested phenomenological coverage and surface-potential roughness dependence to the heating, appear to be related to the nonmonotonic behavior previously reported.

2.
Mol Phys ; 117(15-16)2019.
Article in English | MEDLINE | ID: mdl-38500511

ABSTRACT

We investigate the work function (WF) variation of different Au crystallographic surface orientations with carbon atom adsorption. Ab initio calculations within density-functional theory are performed on carbon deposited (100), (110), and (111) gold surfaces. The WF behaviour with carbon coverage for the different surface orientations is explained by the resultant electron charge density distributions. The dynamics of carbon adsorption at sub-to-one- monolayer (ML) coverage depends on the landscape of the potential energy surfaces. At higher ML coverage, because of adsorption saturation, the WF will have weak surface orientation dependence. This systematic study has consequential bearing on studies of electric-field noise emanating from polycrystalline gold ion-trap electrodes that have been largely employed in microfabricated electrodes.

3.
Phys Rev Lett ; 109(10): 103001, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005284

ABSTRACT

Motional heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The detailed physical origin of this heating is not well understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role of adsorbates on the electrodes by identifying contaminant overlayers, implementing an in situ argon-ion-beam cleaning treatment, and measuring ion heating rates before and after treating the trap electrodes' surfaces. We find a 100-fold reduction in heating rate after treatment. The experiments described here are sensitive to low levels of electric-field noise in the MHz frequency range. Therefore, this approach could become a useful tool in surface science that complements established techniques.

4.
Phys Rev Lett ; 93(18): 180401, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15525134

ABSTRACT

We have detected coherent quantum oscillations between Josephson phase qubits and critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. These results reveal a new aspect of the quantum behavior of Josephson junctions, and they demonstrate the means to measure two-qubit interactions in the time domain. The junction-fluctuator interaction also points to a possible mechanism for decoherence and reduced fidelity in superconducting qubits.

5.
Phys Rev Lett ; 93(7): 077003, 2004 Aug 13.
Article in English | MEDLINE | ID: mdl-15324267

ABSTRACT

Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. Improving the operation of a Josephson junction based phase qubit has revealed microscopic two-level systems or resonators within the tunnel barrier that cause decoherence. We report spectroscopic data that show a level splitting characteristic of coupling between a two-state qubit and a two-level system. Furthermore, we show Rabi oscillations whose "coherence amplitude" is significantly degraded by the presence of these spurious microwave resonators. The discovery of these resonators impacts the future of Josephson qubits as well as existing Josephson technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...