Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 118(1): 92-8, 2012.
Article in English | MEDLINE | ID: mdl-22186620

ABSTRACT

We investigated the anti-vasospastic potential of fasudil's active metabolite, hydroxyfasudil, a Rho-kinase inhibitor, after subarachnoid hemorrhage (SAH) and also its effect on hemorheological abnormalities following cerebral ischemia. Chronic cerebral vasospasm was produced using a two-hemorrhage canine model. On day 7, angiographic vasospasm was observed in all animals, and intravenous administration of hydroxyfasudil (3 mg·kg(-1)·30 min(-1)) significantly reversed the vasospasm (predose diameter of the basilar artery, 57.9% ± 2.0% of the baseline before the injection of blood; postdose diameter, 64.5% ± 1.9%). The viscosity of whole blood was significantly increased 24 h after 1 h middle cerebral artery occlusion in rats. Hydroxyfasudil (3 and 10 mg/kg, i.p.) significantly decreased blood viscosity. The specificity of hydroxyfasudil was examined against a panel of 17 protein kinases using ELISA analysis. Hydroxyfasudil inhibited Rho-kinase α and ß at a concentration of 10 µM by 97.6% and 97.7%, respectively. No other protein kinase was inhibited with 10 µM hydroxyfasudil by over 40%. The present results indicate hydroxyfasudil is a selective inhibitor of Rho-kinase. The results also suggest that hydroxyfasudil contributes to the potency of fasudil to prevent cerebral vasospasm and hyperviscosity and suggest the potential utility of hydroxyfasudil as a therapeutic agent for patients with SAH.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Brain Ischemia/drug therapy , Protein Kinase Inhibitors/therapeutic use , Subarachnoid Hemorrhage/drug therapy , Vasospasm, Intracranial/drug therapy , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Blood Viscosity/drug effects , Brain Ischemia/enzymology , Brain Ischemia/physiopathology , Disease Models, Animal , Dogs , Female , Hematocrit , Male , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Wistar , Subarachnoid Hemorrhage/physiopathology , Vasospasm, Intracranial/physiopathology
2.
J Pharmacol Sci ; 118(1): 92-98, 2012.
Article in English | MEDLINE | ID: mdl-32092842

ABSTRACT

We investigated the anti-vasospastic potential of fasudil's active metabolite, hydroxyfasudil, a Rho-kinase inhibitor, after subarachnoid hemorrhage (SAH) and also its effect on hemorheological abnormalities following cerebral ischemia. Chronic cerebral vasospasm was produced using a two-hemorrhage canine model. On day 7, angiographic vasospasm was observed in all animals, and intravenous administration of hydroxyfasudil (3 mg·kg-1·30 min-1) significantly reversed the vasospasm (predose diameter of the basilar artery, 57.9% ± 2.0% of the baseline before the injection of blood; postdose diameter, 64.5% ± 1.9%). The viscosity of whole blood was significantly increased 24 h after 1 h middle cerebral artery occlusion in rats. Hydroxyfasudil (3 and 10 mg/kg, i.p.) significantly decreased blood viscosity. The specificity of hydroxyfasudil was examined against a panel of 17 protein kinases using ELISA analysis. Hydroxyfasudil inhibited Rho-kinase α and ß at a concentration of 10 µM by 97.6% and 97.7%, respectively. No other protein kinase was inhibited with 10 µM hydroxyfasudil by over 40%. The present results indicate hydroxyfasudil is a selective inhibitor of Rho-kinase. The results also suggest that hydroxyfasudil contributes to the potency of fasudil to prevent cerebral vasospasm and hyperviscosity and suggest the potential utility of hydroxyfasudil as a therapeutic agent for patients with SAH.

3.
Brain Res Bull ; 84(2): 174-7, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21126559

ABSTRACT

The aim of this study was to investigate the possible effects of the Rho-kinase inhibitor, fasudil, on the lysophosphatidic acid (LPA)-induced neurite retraction in N1E-115 cells. In cultured N1E-115 cells, LPA produced a marked increase in the population of rounded cells. Fasudil or hydroxyfasudil, an active metabolite of fasudil, blocked cell rounding in a concentration-dependent manner at levels between 1 and 10 µM, with IC50 values of 1.7 or 1.6 µM, respectively. Fasudil or hydroxyfasudil concentration-dependently inhibited phosphorylation of the myosin binding subunit of myosin phosphatase in N1E-115 cells. These results indicate that Rho-kinase is essential for LPA-induced neurite retraction in N1E-115 cells and that inactivation of Rho-kinase by a Rho-kinase inhibitor, such as fasudil, eliminates cell rounding and promotes neurite outgrowth, thus improving neurological function in the brain damage.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Cell Line/drug effects , Lysophospholipids/pharmacology , Neurites/drug effects , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Humans , Mice , Neurites/ultrastructure , Neurons/cytology , rho-Associated Kinases/metabolism
4.
Brain Res Bull ; 81(1): 191-5, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19723568

ABSTRACT

We investigated the neuroprotective effects of fasudil's active metabolite, hydroxyfasudil, a Rho-kinase inhibitor, in a rat stroke model in which endothelial damage and subsequent thrombotic occlusion were selectively induced in perforating arteries. By examining the effects on the endothelial damage/dysfunction, we thought to explore the mechanism of Rho-kinase inhibitors. Hydroxyfasudil (10mg/kg, i.p., once daily for 3 days) significantly improved neurological functions and reduced the size of the infarct area produced by internal carotid artery injection of sodium laurate in a rat cerebral microthrombosis model. Treatment with fasudil or hydroxyfasudil concentration-dependently inhibited tumor necrosis factor alpha-induced tissue factor expression on the surface of cultured human umbilical vein endothelial cells. They also inhibited thrombin-induced endothelial hyperpermeability. The present findings suggest that hydroxyfasudil is efficacious in preventing brain damage associated with cerebral ischemia, and is partially responsible for fasudil's cytoprotective potential. The results also suggest that the therapeutic benefits against ischemic injury of Rho-kinase inhibitors are attributed, at least in part, to activity upon endothelial damage/dysfunction.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Brain Ischemia/drug therapy , Endothelium/drug effects , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/administration & dosage , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacokinetics , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Brain/blood supply , Brain/drug effects , Brain/pathology , Brain Ischemia/pathology , Capillary Permeability/drug effects , Cells, Cultured , Disease Models, Animal , Endothelium/metabolism , Endothelium/pathology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , In Vitro Techniques , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacokinetics , Rats , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/pathology , Thromboplastin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Umbilical Veins/drug effects , Umbilical Veins/metabolism
5.
Brain Res ; 1257: 89-93, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19133241

ABSTRACT

BACKGROUND: Rho-kinase (ROCK) is a downstream effector of Rho GTPase that is known to regulate various pathological processes important to the development of ischemic stroke, such as thrombus formation, inflammation, and vasospasm. Inhibition of ROCK leads to decreased infarct size in animal models of ischemic stroke. This study tests the hypothesis that ROCK activity increases during the acute phase of ischemic stroke. METHODS: Serial blood samples were drawn from 10 patients with acute ischemic stroke presenting within 24 h of symptom onset and with NIHSS scores >or=4. Samples were taken at 24, 48, and 72 h. Leukocyte ROCK activity was determined by immunoblotting leukocyte lysates with antibodies to the phosphorylated form of myosin-binding subunit (P-MBS) of myosin light chain phosphatase (MLCP). MBS and P-MBS contents were normalized to alpha-tubulin, and ROCK activity was expressed as the ratio of P-MBS to MBS. ROCK activities in these 10 patients were compared to baseline ROCK activities in 10 control subjects without acute illness and matched for sex, age, and number of vascular risk factors using a two-tailed Student's t-test. RESULTS: The mean NIHSS score in patients with stroke was 15.4. ROCK activity was significantly increased at 24 and 48 h in patients after acute ischemic stroke when compared to control values, with peak elevations at 48 h after stroke onset. There was no apparent correlation between ROCK activity and stroke severity based on NIHSS. CONCLUSIONS: Leukocyte ROCK activity is increased in patients after acute ischemic stroke with maximal activity occurring about 48 h after stroke onset. These findings suggest that activation of ROCK may play a role in the pathogenesis of ischemic stroke in humans.


Subject(s)
Brain Ischemia/enzymology , Leukocytes/enzymology , Stroke/enzymology , rho-Associated Kinases/blood , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Aged , Blotting, Western , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation/drug effects , Tubulin/metabolism , rho-Associated Kinases/antagonists & inhibitors
6.
Brain Res ; 1193: 102-8, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18187127

ABSTRACT

The aim of this study was to investigate the influence of delayed Rho-kinase inhibition with fasudil on second ischemic injury in a rat cerebral thrombosis model. Cerebral ischemia was induced in rats by injecting 150 mug of sodium laurate into the left internal carotid artery on day 1. In the ischemic group, the regional cerebral blood flow (rCBF) was significantly decreased 6.5 h after the injection. Fasudil (3 mg/kg/30 min i.v. infusion) significantly increased rCBF. The viscosity of whole blood was significantly increased 48 h after the injection of sodium laurate. Fasudil (10 mg/kg, i.p.) significantly decreased blood viscosity. To clarify the therapeutic time window of fasudil, rats received their first i.p. administration of fasudil (10 mg/kg) 6 h after an injection of sodium laurate. Administration of fasudil twice daily was continued until day 4. Fasudil prevented the accumulation of neutrophils within the brain as seen from measurements taken on day 3, and improved neuronal functions and reduced the infarction area as seen on day 5. Fasudil and hydroxyfasudil, an active metabolite of fasudil, concentration-dependently inhibited phosphorylation of myosin binding subunit of myosin phosphatase in neutrophils. The present results indicate that inhibition of Rho-kinase activation with fasudil is effective for the treatment of ischemic brain damage with a wide therapeutic time window by improving hemodynamic function and preventing the inflammatory responses. These results suggest that fasudil will be a novel and efficacious approach for the treatment of acute ischemic stroke.


Subject(s)
Brain Ischemia/enzymology , Brain Ischemia/etiology , Intracranial Thrombosis/complications , rho-Associated Kinases/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/administration & dosage , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/metabolism , Animals , Antipyrine/analogs & derivatives , Blood Flow Velocity/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cerebral Infarction/drug therapy , Cerebral Infarction/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Intracranial Thrombosis/chemically induced , Intracranial Thrombosis/metabolism , Intracranial Thrombosis/therapy , Lauric Acids , Male , Myosins/metabolism , Protein Binding/drug effects , Protein Kinase Inhibitors/administration & dosage , Rats , Rats, Sprague-Dawley , Regional Blood Flow/drug effects , Time Factors
7.
Eur J Pharmacol ; 455(2-3): 169-74, 2002 Nov 29.
Article in English | MEDLINE | ID: mdl-12445583

ABSTRACT

This study was designed to investigate possible effects of the Rho-kinase inhibitor, fasudil, on the progression of renal failure in rats with unilateral ureteral obstruction. The renal failure markers monitored were the extent of renal interstitial fibrosis and that of macrophage infiltration. In kidneys with unilateral ureteral obstruction, interstitial fibrosis was observed, using Sirius-Red staining, on day 16 after unilateral ureteral obstruction. Macrophage infiltration was observed by immunohistochemistry, using the antibody, ED1. Interstitial fibrosis and macrophage infiltration were significantly attenuated in fasudil-treated animals. The migration of monocytes in vitro elicited by N-formyl-methionyl-leucyl-phenylalanine was potently inhibited by fasudil and its active metabolite, hydroxyfasudil. These results suggest that inhibition of Rho-kinase produces a reduction of macrophage infiltration and represents a new therapeutic strategy for renal fibrosis, a major factor in the progression to end-stage renal failure.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Enzyme Inhibitors/pharmacology , Kidney/drug effects , Ureteral Obstruction/complications , Animals , Chemotaxis/drug effects , Dose-Response Relationship, Drug , Fibrosis/etiology , Kidney/pathology , Macrophages/drug effects , Macrophages/pathology , Male , Monocytes/cytology , Monocytes/drug effects , Protein Kinase Inhibitors , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...