Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Cardiothorac Surg ; 19(1): 315, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824517

ABSTRACT

BACKGROUND: Post-operative atrial fibrillation (POAF) occurs in up to 40% of patients following coronary artery bypass grafting (CABG) and is associated with a higher risk of stroke and mortality. This study investigates how POAF may be mitigated by epicardial placement of aseptically processed human placental membrane allografts (HPMAs) before pericardial closure in CABG surgery. This study was conducted as a pilot feasibility study to collect preliminary for a forthcoming multi-center randomized controlled trial. METHODS: This retrospective observational study of patients undergoing CABG surgery excluded patients with pre-operative heart failure, chronic kidney disease, or a history of atrial fibrillation. The "treatment" group (n = 24) had three HPMAs placed epicardially following cardiopulmonary bypass decannulation but before partial pericardial approximation and chest closure. The only difference in clinical protocol for the control group (n = 54) was that they did not receive HPMA. RESULTS: HPMA-treated patients saw a significant, greater than four-fold reduction in POAF incidence compared to controls (35.2-8.3%, p = 0.0136). Univariate analysis demonstrated that HPMA treatment was associated with an 83% reduction in POAF (OR = 0.17, p = 0.0248). Multivariable analysis yielded similar results (OR = 0.07, p = 0.0156) after controlling for other covariates. Overall length of stay (LOS) between groups was similar, but ICU LOS trended lower with HPMA treatment (p = 0.0677). Post-operative inotrope and vasopressor requirements were similar among groups. There was no new-onset post-operative heart failure, stroke, or death reported up to thirty days in either group. CONCLUSIONS: Epicardial HPMA placement can be a simple intervention at the end of CABG surgery that may provide a new approach to reduce post-operative atrial fibrillation by modulating local inflammation, possibly reducing ICU and hospital stay, and ultimately improving patient outcomes.


Subject(s)
Atrial Fibrillation , Coronary Artery Bypass , Placenta , Postoperative Complications , Humans , Atrial Fibrillation/prevention & control , Atrial Fibrillation/surgery , Atrial Fibrillation/etiology , Coronary Artery Bypass/methods , Coronary Artery Bypass/adverse effects , Female , Pilot Projects , Male , Retrospective Studies , Middle Aged , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , Aged , Pregnancy , Allografts , Pericardium , Feasibility Studies
3.
Physiol Rep ; 11(20): e15838, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37849042

ABSTRACT

Cardiac ischemic reperfusion injury (IRI) is paradoxically instigated by reestablishing blood-flow to ischemic myocardium typically from a myocardial infarction (MI). Although revascularization following MI remains the standard of care, effective strategies remain limited to prevent or attenuate IRI. We hypothesized that epicardial placement of human placental amnion/chorion (HPAC) grafts will protect against IRI. Using a clinically relevant model of IRI, swine were subjected to 45 min percutaneous ischemia followed with (MI + HPAC, n = 3) or without (MI only, n = 3) HPAC. Cardiac function was assessed by echocardiography, and regional punch biopsies were collected 14 days post-operatively. A deep phenotyping approach was implemented by using histological interrogation and incorporating global proteomics and transcriptomics in nonischemic, ischemic, and border zone biopsies. Our results established HPAC limited the extent of cardiac injury by 50% (11.0 ± 2.0% vs. 22.0 ± 3.0%, p = 0.039) and preserved ejection fraction in HPAC-treated swine (46.8 ± 2.7% vs. 35.8 ± 4.5%, p = 0.014). We present comprehensive transcriptome and proteome profiles of infarct (IZ), border (BZ), and remote (RZ) zone punch biopsies from swine myocardium during the proliferative cardiac repair phase 14 days post-MI. Both HPAC-treated and untreated tissues showed regional dynamic responses, whereas only HPAC-treated IZ revealed active immune and extracellular matrix remodeling. Decreased endoplasmic reticulum (ER)-dependent protein secretion and increased antiapoptotic and anti-inflammatory responses were measured in HPAC-treated biopsies. We provide quantitative evidence HPAC reduced cardiac injury from MI in a preclinical swine model, establishing a potential new therapeutic strategy for IRI. Minimizing the impact of MI remains a central clinical challenge. We present a new strategy to attenuate post-MI cardiac injury using HPAC in a swine model of IRI. Placement of HPAC membrane on the heart following MI minimizes ischemic damage, preserves cardiac function, and promotes anti-inflammatory signaling pathways.


Subject(s)
Heart Injuries , Myocardial Infarction , Pregnancy , Swine , Humans , Female , Animals , Placenta/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Heart Injuries/drug therapy , Heart Injuries/metabolism , Heart Injuries/pathology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal
4.
Front Cardiovasc Med ; 9: 809960, 2022.
Article in English | MEDLINE | ID: mdl-35252389

ABSTRACT

Despite the immense investment in research devoted to cardiovascular diseases, mechanisms of progression and potential treatments, it remains one of the leading causes of death in the world. Cellular based strategies have been explored for decades, having mixed results, while more recently inflammation and its role in healing, regeneration and disease progression has taken center stage. Placental membranes are immune privileged tissues whose native function is acting as a protective barrier during fetal development, a state which fosters regeneration and healing. Their unique properties stem from a complex composition of extracellular matrix, growth factors and cytokines involved in cellular growth, survival, and inflammation modulation. Placental allograft membranes have been used successfully in complex wound applications but their potential in cardiac wounds has only begun to be explored. Although limited, pre-clinical studies demonstrated benefits when using placental membranes compared to other standard of care options for pericardial repair or infarct wound covering, facilitating cardiomyogenesis of stem cell populations in vitro and supporting functional performance in vivo. Early clinical evidence also suggested use of placental allograft membranes as a cardiac wound covering with the potential to mitigate the predominantly inflammatory environment such as pericarditis and prevention of new onset post-operative atrial fibrillation. Together, these studies demonstrate the promising translational potential of placental allograft membranes as post-surgical cardiac wound coverings. However, the small number of publications on this topic highlights the need for further studies to better understand how to support the safe and efficient use of placenta allograft membranes in cardiac surgery.

5.
Tissue Eng Part A ; 27(17-18): 1182-1191, 2021 09.
Article in English | MEDLINE | ID: mdl-33218288

ABSTRACT

To circumvent the lack of donor pancreas, insulin-producing cells (IPCs) derived from pluripotent stem cells emerged as a viable cell source for the treatment of type 1 diabetes. While it has been shown that IPCs can be derived from pluripotent stem cells using various protocols, the long-term viability and functional stability of IPCs in vitro remains a challenge. Thus, the principles of three-dimensional (3D) tissue engineering and a perfusion flow bioreactor were used in this study to establish 3D microenvironment suitable for long-term in vitro culture of IPCs-derived from mouse embryonic stem cells. It was observed that in static 3D culture of IPCs, the viability decreased gradually with longer time in culture. However, when a low flow (0.02 mL/min) was continuously applied to 3D IPC containing tissues, enhanced survival and function of IPCs were demonstrated. IPCs cultured under low flow exhibited a significantly enhanced glucose responsiveness and upregulation of Ins1 compared to that of static culture. In summary, this study demonstrates the feasibility and benefits of 3D engineered tissue environment combined with perfusion flow in vitro for culturing stem cell-derived IPCs. Impact statement This in vitro three-dimensional tissue system combined with the flow can be used to better understand the role of biophysical cues that facilitates improved function and maturation of stem cell-derived insulin-producing cells, which can ultimately advance the field of pancreatic tissue engineering as well as in diabetes treatment.


Subject(s)
Insulin-Secreting Cells , Pluripotent Stem Cells , Animals , Bioreactors , Cell Differentiation , Insulin , Mice , Perfusion
6.
Tissue Eng Part B Rev ; 27(5): 475-485, 2021 10.
Article in English | MEDLINE | ID: mdl-33096955

ABSTRACT

Cardiovascular disease, including myocardial infarction (MI), is the leading cause of death in the western world. Following MI, a large number of cardiomyocytes are lost and inflammatory cells such as monocytes and macrophages migrate into the damaged region to remove dead cells and tissue. These inflammatory cells secrete growth factors to induce degradation of the extracellular matrix in the myocardium and recruit cardiac fibroblasts. However, the contribution of specific macrophage subsets on cardiac cell function and survival in the steady state as well as in the diseased state is not well known. There is an increasing demand for in vitro cardiac disease models to bridge the critical missing link in the existing experimental methods. In this review, studies using in vitro models to examine the interaction between macrophages and cardiac cells, including cardiomyocytes, endothelial cells, and fibroblasts, are summarized to better understand the complex inflammatory cascade post-MI. The current challenges and the future directions of in vitro cardiac models are also discussed. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize the development of treatments and diagnostic alternatives. Impact statement The inflammatory cascade postmyocardial infarction (MI) is very complex. In vitro cardiac disease model studies bridge the critical missing link in the existing experimental methods and provide insights, including multicellular interaction post-MI. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize in developing treatments and diagnostic alternatives.


Subject(s)
Endothelial Cells , Myocardial Infarction , Cell Communication , Humans , Macrophages
7.
Physiol Rep ; 7(13): e14137, 2019 07.
Article in English | MEDLINE | ID: mdl-31301118

ABSTRACT

Following myocardial infarction (MI), myocardial inflammation plays a crucial role in the pathogenesis of MI injury and macrophages are among the key cells activated during the initial phases of the host response regulating the healing process. While macrophages have emerged as attractive effectors in tissue injury and repair, the contribution of macrophages on cardiac cell function and survival is not fully understood due to complexity of the in vivo inflammatory microenvironment. Understanding the key cells involved and how they communicate with one another is of paramount importance for the development of effective clinical treatments. Here, novel in vitro myocardial inflammation models were developed to examine how both direct and indirect interactions with polarized macrophage subsets present in the post-MI microenvironment affect cardiomyocyte function. The indirect model using conditioned medium from polarized macrophage subsets allowed examination of the effects of macrophage-derived factors on stem cell-derived cardiomyocyte function for up to 3 days. The results from the indirect model demonstrated that pro-inflammatory macrophage-derived factors led to a significant downregulation of cardiac troponin T (cTnT) and sarcoplasmic/endoplasmic reticulum calcium ATPase (Serca2) gene expression. It also demonstrated that inhibition of macrophage-secreted matricellular protein, osteopontin (OPN), led to a significant decrease in cardiomyocyte store-operated calcium entry (SOCE). In the direct model, stem cell-derived cardiomyocytes were co-cultured with polarized macrophage subsets for up to 3 days. It was demonstrated that anti-inflammatory macrophages significantly increased cardiomyocyte Ca2+ fractional release while macrophages independent of their subtypes led to significant downregulation of SOCE response in cardiomyocytes. This study describes simplified and controlled in vitro myocardial inflammation models, which allow examination of potential beneficial and deleterious effects of macrophages on cardiomyocytes and vise versa. This can lead to our improved understanding of the inflammatory microenvironment post-MI, otherwise difficult to directly investigate in vivo or by using currently available in vitro models.


Subject(s)
Calcium Signaling , Myocytes, Cardiac/metabolism , Animals , Cellular Microenvironment , Coculture Techniques , Culture Media, Conditioned/pharmacology , Mice , Myocytes, Cardiac/drug effects , Osteopontin/genetics , Osteopontin/metabolism , RAW 264.7 Cells , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Troponin I/genetics , Troponin I/metabolism
8.
J Biomed Mater Res A ; 106(11): 2923-2933, 2018 11.
Article in English | MEDLINE | ID: mdl-30325093

ABSTRACT

Contractile behavior of cardiomyocytes relies on directed signal propagation through the electroconductive networks that exist within the native myocardium. Due to their unique electrical properties, electroactive materials, such as graphene, have recently emerged as promising candidate materials for cardiac tissue engineering applications. In this work, the potential of three-dimensional (3D) nanofibrous graphene and poly(caprolactone) (PCL + G) composite scaffold for cardiac tissue engineering has been explored for the first time. The addition of graphene into PCL led to an increased volume conductivity of scaffolds with an even distribution of graphene particles throughout the matrix. Graphene particles provided local conductive sites within the PCL matrix, which enabled application of external electrical stimulation throughout the scaffold using a custom point stimulation device. When mouse embryonic stem cell derived cardiomyocytes (mES-CM) were seeded on PCL + G scaffolds, cells adhered well, contracted spontaneously, and exhibited classical cardiomyocyte phenotype confirming the biocompatibility of electroactive PCL + G scaffolds. Further functional characterization demonstrated that graphene especially affected Ca2+ handling properties of mES-CM compared to that of cardiomyocytes cultured in 2D culture, highlighting the potential of PCL + G for in vitro cardiac tissue engineering. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part A: 106A: 2923-2933, 2018.


Subject(s)
Graphite/chemistry , Mouse Embryonic Stem Cells/cytology , Myocardium/cytology , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Animals , Calcium/metabolism , Cell Line , Electric Conductivity , Electric Stimulation/instrumentation , Equipment Design , Mice , Mouse Embryonic Stem Cells/metabolism , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nanofibers/chemistry , Nanofibers/ultrastructure , Polyesters/chemistry
9.
J Biomed Nanotechnol ; 14(4): 802-807, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-31352954

ABSTRACT

The fabrication of extracellular matrix-mimic hydrogels that can nurture and direct differentiation of embryonic stem cells is an important target for pattern-printed tissue replacement. Another desirable feature for such materials is their ability to be injected and recover their rheological features post-injection, allowing for facile non-invasive implantation. In this report, we demonstrate the ability of a self-assembling peptide hydrogel to support the culture of embryonic stem cells with the potential to direct differentiation. We also show that we can write a functional tissue replacement with a predetermined pattern using our formulation. Our results may lead to in vivo replacement of diseased tissue with a spatially resolved pattern of a regenerative hydrogel.


Subject(s)
Embryonic Stem Cells , Extracellular Matrix , Hydrogels , Peptides , Writing
10.
Biotechnol Bioeng ; 113(7): 1577-85, 2016 07.
Article in English | MEDLINE | ID: mdl-26705272

ABSTRACT

Recently, electrospun polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) scaffolds have been developed for tissue engineering applications. These materials have piezoelectric activity, wherein they can generate electric charge with minute mechanical deformations. Since the myocardium is an electroactive tissue, the unique feature of a piezoelectric scaffold is attractive for cardiovascular tissue engineering applications. In this study, we examined the cytocompatibility and function of pluripotent stem cell derived cardiovascular cells including mouse embryonic stem cell-derived cardiomyocytes (mES-CM) and endothelial cells (mES-EC) on PVDF-TrFE scaffolds. MES-CM and mES-EC adhered well to PVDF-TrFE and became highly aligned along the fibers. When cultured on scaffolds, mES-CM spontaneously contracted, exhibited well-registered sarcomeres and expressed classic cardiac specific markers such as myosin heavy chain, cardiac troponin T, and connexin43. Moreover, mES-CM cultured on PVDF-TrFE scaffolds responded to exogenous electrical pacing and exhibited intracellular calcium handling behavior similar to that of mES-CM cultured in 2D. Similar to cardiomyocytes, mES-EC also demonstrated high viability and maintained a mature phenotype through uptake of low-density lipoprotein and expression of classic endothelial cell markers including platelet endothelial cell adhesion molecule, endothelial nitric oxide synthase, and the arterial specific marker, Notch-1. This study demonstrates the feasibility of PVDF-TrFE scaffold as a candidate material for developing engineered cardiovascular tissues utilizing stem cell-derived cells. Biotechnol. Bioeng. 2016;113: 1577-1585. © 2015 Wiley Periodicals, Inc.


Subject(s)
Embryonic Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Polyvinyls/toxicity , Tissue Scaffolds , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Mice , Myocytes, Cardiac/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...