Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 146(7): 956-967, 2019 06.
Article in English | MEDLINE | ID: mdl-30975235

ABSTRACT

The essential oil (EO) of Thymus capitatus, seven fractions (F1-F7) obtained from silica gel chromatography, and several pure EO components were evaluated with respect to in vitro activities against Echinococcus multilocularis metacestodes and germinal layer (GL) cells. Attempts to evaluate physical damage in metacestodes by phosphoglucose isomerase (PGI) assay failed because EO and F1-F7 interfered with the PGI-activity measurements. A metacestode viability assay based on Alamar Blue, as well as transmission electron microscopy, demonstrated that exposure to EO, F2 and F4 impaired metacestode viability. F2 and F4 exhibited higher toxicity against metacestodes than against mammalian cells, whereas EO was as toxic to mammalian cells as to the parasite. However, none of these fractions exhibited notable activity against isolated E. multilocularis GL cells. Analysis by gas chromatography-mass spectrometry showed that carvacrol was the major component of the EO (82.4%), as well as of the fractions F3 (94.4%), F4 (98.1%) and F5 (90.7%). Other major components of EO were ß-caryophyllene, limonene, thymol and eugenol. However, exposure of metacestodes to these components was ineffective. Thus, fractions F2 and F4 of T. capitatus EO contain potent anti-echinococcal compounds, but the activities of these two fractions are most likely based on synergistic effects between several major and minor constituents.


Subject(s)
Anthelmintics/pharmacology , Echinococcus multilocularis/cytology , Echinococcus multilocularis/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Thymus Plant/chemistry , Animals , Anthelmintics/chemistry , Biological Assay , Carcinoma, Hepatocellular , Cell Survival/drug effects , Cells, Cultured , Chromatography, Gel , Drug Discovery , Echinococcosis/drug therapy , Fibroblasts/drug effects , Foreskin/cytology , Foreskin/drug effects , Humans , Male , Oils, Volatile/chemistry , Plant Oils/chemistry , Rats
2.
Int J Parasitol Drugs Drug Resist ; 8(3): 440-450, 2018 12.
Article in English | MEDLINE | ID: mdl-30396011

ABSTRACT

The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the lethal disease alveolar echinococcosis. Current chemotherapeutic treatment options are based on benzimidazoles (albendazole and mebendazole), which are insufficient and hence alternative drugs are needed. In this study, we screened the 400 compounds of the Medicines for Malaria Venture (MMV) Pathogen Box against E. multilocularis metacestodes. For the screen, we employed the phosphoglucose isomerase (PGI) assay which assesses drug-induced damage on metacestodes, and identified ten new compounds with activity against the parasite. The anti-theilerial drug MMV689480 (buparvaquone) and MMV671636 (ELQ-400) were the most promising compounds, with an IC50 of 2.87 µM and 0.02 µM respectively against in vitro cultured E. multilocularis metacestodes. Both drugs suggested a therapeutic window based on their cytotoxicity against mammalian cells. Transmission electron microscopy revealed that treatment with buparvaquone impaired parasite mitochondria early on and additional tests showed that buparvaquone had a reduced activity under anaerobic conditions. Furthermore, we established a system to assess mitochondrial respiration in isolated E. multilocularis cells in real time using the Seahorse XFp Analyzer and demonstrated inhibition of the cytochrome bc1 complex by buparvaquone. Mice with secondary alveolar echinococcosis were treated with buparvaquone (100 mg/kg per dose, three doses per week, four weeks of treatment), but the drug failed to reduce the parasite burden in vivo. Future studies will reveal whether improved formulations of buparvaquone could increase its effectivity.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Repositioning/methods , Echinococcus multilocularis/drug effects , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Albendazole/pharmacology , Albendazole/therapeutic use , Animals , Anthelmintics/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Drug Repositioning/statistics & numerical data , Echinococcosis/drug therapy , Echinococcus multilocularis/pathogenicity , Electron Transport Complex III/drug effects , Electron Transport Complex III/pharmacology , Glucose-6-Phosphate Isomerase/metabolism , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , Mice , Microscopy, Electron, Transmission , Naphthoquinones/chemistry , Parasite Load , Phenyl Ethers/pharmacology , Quinolones/pharmacology
3.
Mol Cell Probes ; 30(4): 211-217, 2016 08.
Article in English | MEDLINE | ID: mdl-27242008

ABSTRACT

Reliable and rapid molecular tools for the genetic identification and differentiation of Echinococcus species and/or genotypes are crucial for studying spatial and temporal transmission dynamics. Here, we describe a novel dual PCR targeting regions in the small (rrnS) and large (rrnL) subunits of mitochondrial ribosomal RNA (rRNA) genes, which enables (i) the specific identification of species and genotypes of Echinococcus (rrnS + L-PCR) and/or (ii) the identification of a range of taeniid cestodes, including different species of Echinococcus, Taenia and some others (17 species of diphyllidean helminths). This dual PCR approach was highly sensitive, with an analytical detection limit of 1 pg for genomic DNA of Echinococcus. Using concatenated sequence data derived from the two gene markers (1225 bp), we identified five unique and geographically informative single nucleotide polymorphisms (SNPs) that allowed genotypes (G1 and G3) of Echinococcus granulosus sensu stricto to be distinguished, and 25 SNPs that allowed differentiation within Echinococcus canadensis (G6/7/8/10). In conclusion, we propose that this dual PCR-based sequencing approach can be used for molecular epidemiological studies of Echinococcus and other taeniid cestodes.


Subject(s)
Echinococcus/genetics , Echinococcus/isolation & purification , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Taenia/genetics , Taenia/isolation & purification , Animals , Base Sequence , DNA, Bacterial/genetics , Genotyping Techniques , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...