Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 360: 121080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733839

ABSTRACT

Conservation of biodiversity requires in-depth knowledge of trait-environment interactions to understand the influence the environment has on species assemblages. Saproxylic beetles exhibit a wide range of traits and functions in the forest ecosystems. Understanding their responses to surrounding environment thus improves our capacity to identify habitats that should be restored or protected. We investigated potential interactions between ecological traits in saproxylic beetles (feeding guilds and habitat preferences) and environmental variables (deadwood, type and age of surrounding forest). We sampled beetles from 78 plots containing newly created high stumps of Scots pine and Silver birch in boreal forest landscapes in Sweden for three consecutive years. Using a model based approach, our aim was to explore potential interactions between ecological traits and the surrounding environment at close and distant scale (20 m and 500 m radius). We found that broadleaf-preferring beetle species are positively associated with the local broadleaf-originated deadwood and broadleaf-rich forests in the surrounding landscapes. Conifer-preferring species are positively associated with the local amount of coniferous deadwood and young and old forests in the surrounding landscape. Fungivorous and predatory beetles are positively associated with old forests in the surrounding landscapes. Our results indicate that both local amounts of deadwood and types of forests in the landscape are important in shaping saproxylic beetle communities. We particularly highlight the need to increase deadwood amounts of various qualities in the landscape, exempt older forests from production and to increase broadleaf-rich habitats in order to meet different beetle species' habitat requirements. Trait responses among saproxylic beetles provide insights into the significance of broadleaf forest and dead wood as essential attributes in boreal forest restoration, which helps conservation planning and management in forest landscapes.


Subject(s)
Biodiversity , Coleoptera , Conservation of Natural Resources , Ecosystem , Forests , Animals , Sweden
3.
Ambio ; 53(3): 482-496, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37819443

ABSTRACT

Restoration of degraded habitat is frequently used in ecological compensation. However, ecological restoration suffers from innate problems of long delivery times of features shown to be good proxies for biodiversity, e.g., large dead trees. We tested a possible way to circumvent this problem; the translocation of hard-to-come deadwood substrates from an impact area to a compensation area. Following translocation, deadwood density in the compensation area was locally equivalent to the impact area, around 20 m3 ha-1, a threshold for supporting high biodiversity of rare and red-listed species. However, deadwood composition differed between the impact and compensation area, showing a need to include more deadwood types, e.g., late decomposition deadwood, in the translocation scheme. To guide future compensation efforts, the cost for translocation at different spatial scales was calculated. We conclude that translocation of deadwood could provide a cost-efficient new tool for ecological compensation/restoration but that the method needs refinement.


Subject(s)
Ecosystem , Trees , Biodiversity , Forests
4.
Ecol Lett ; 26(7): 1157-1173, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156097

ABSTRACT

The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.


Subject(s)
Coleoptera , Ecosystem , Animals , Trees , Wood , Biodiversity , Europe
5.
Ambio ; 51(12): 2478-2495, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35661986

ABSTRACT

The rotation forestry system provides high biomass production, but could also have a negative impact on species sensitive to disturbance. Continuous cover forestry (CCF) could contribute to solving these conflicting goals, but its feasibility in nutrient limited boreal forests is yet unresolved. In a unique experiment, we simultaneously assessed the short-term effect of single-tree selection on both biomass production and biodiversity (vascular plants, bryophytes, wood-inhabiting fungi), and tested fertilization as a way to mediate growth-biodiversity trade-offs. We found that unharvested stands and stands subjected to single-tree selection had a similar species assemblage of vascular plants, bryophytes, and wood-inhabiting fungi. Fertilization increased growth by 37% and induced shifts in two understory species (favoring the grass Avenella flexuosa and disfavoring the bryophyte Hylocomium splendens). We conclude that single-tree selection may become a useful tool to enhance biodiversity in managed forests.


Subject(s)
Abies , Picea , Pinus , Forestry , Trees , Biomass , Forests , Biodiversity
6.
Nature ; 597(7874): 77-81, 2021 09.
Article in English | MEDLINE | ID: mdl-34471275

ABSTRACT

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Subject(s)
Carbon Cycle , Forests , Insecta/metabolism , Trees/metabolism , Animals , Carbon Sequestration , Climate , Ecosystem , Geographic Mapping , International Cooperation
7.
Ambio ; 49(5): 1050-1064, 2020 May.
Article in English | MEDLINE | ID: mdl-31529355

ABSTRACT

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden's red-list, and Sweden's 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden's protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden's long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.


Subject(s)
Forestry , Trees , Biodiversity , Conservation of Natural Resources , Forests , Sweden
8.
Ambio ; 49(5): 1065-1066, 2020 05.
Article in English | MEDLINE | ID: mdl-31734903

ABSTRACT

In the original published article, the sentence "Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and over 2000 forest-associated species (of 15 000 assessed) are listed as threatened on Sweden's red-list, largely represented by macro-fungi, beetles, lichens and butterflies (Sandström 2015)."under the section Introduction was incorrect. The correct version of the sentence is "Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and approximately 2000 forest-associated species (of 15 000 assessed) are on Sweden's red-list, largely represented by macro-fungi, beetles, lichens and butterflies (Sandström 2015)."

9.
PLoS One ; 13(4): e0194905, 2018.
Article in English | MEDLINE | ID: mdl-29634728

ABSTRACT

Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.


Subject(s)
Coleoptera/physiology , Forestry/methods , Taiga , Animals , Biodiversity , Conservation of Natural Resources , Extinction, Biological , Geography , Principal Component Analysis , Species Specificity , Sweden , Trees , Wood
10.
J Environ Manage ; 205: 1-8, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28961435

ABSTRACT

Uneven-aged silviculture may better maintain species assemblages associated with old-growth forests than clear felling in part due to habitat heterogeneity created by maintaining standing retention strips adjacent to harvest trails. Retention strips and harvest trails created at the time of tree removal will likely have different microclimate and may harbor different assemblages. In some cases, the resultant stand heterogeneity associated with uneven-aged silviculture may be similar to natural small-scale disturbances. For beetles, increased light and temperature as well as potential access to young vegetation and deadwood substrates present in harvset trails may harbor beetle assemblages similar to those found in natural gaps. We sampled saproxylic beetles using flight intercept traps placed in harvest corridors and retention strips in 9 replicated uneven-aged spruce stands in central Sweden. We compared abundance, species richness and composition between harvest corridors and retention strips using generalized linear models, rarefaction, permutational multivariate analysis of variance and indicator species analysis. Canopy openness doubled, mean temperature and variability in daily temperature increased and humidity decreased on harvest trails. Beetle richness and abundance were greater in harvests trails than in retention strips and the beetle species composition differed significantly between habitats. Twenty-five species were associated with harvest trails, including three old-growth specialists such as Agathidium discoideum (Erichson), currently red-listed. We observed only one species, Xylechinus pilosus (Ratzeburg) that strongly favored retention strips. Harvest trails foster both open habitat species and old-growth species while retention strips harbored forest interior specialists. The combination of closed canopy, stratified forest in the retention strips and gap-like conditions on the harvest trails thus increases overall species richness and maintains more diverse assemblages at the stand level than would otherwise be seen in less heterogeneous stand types. This suggests that uneven-aged silviculture may provide added conservation benefits for both open habitat and old-growth specialists than silvicultural approaches that reduce stand heterogeneity.


Subject(s)
Biodiversity , Coleoptera , Forests , Animals , Ecosystem , Sweden , Trees
11.
Front Plant Sci ; 6: 279, 2015.
Article in English | MEDLINE | ID: mdl-25983736

ABSTRACT

Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees.

12.
PLoS One ; 10(3): e0118896, 2015.
Article in English | MEDLINE | ID: mdl-25756871

ABSTRACT

The increasing demand for biofuels from logging residues require serious attention on the importance of dead wood substrates on clear-cuts for the many forestry-intolerant saproxylic (wood-inhabiting) species. In particular, the emerging harvest of low stumps motivates further study of these substrates. On ten clear-cuts we compared the species richness, abundance and species composition of saproxylic beetles hatching from four to nine year old low stumps, high stumps and logs of Norway spruce. By using emergence traps we collected a total of 2,670 saproxylic beetles among 195 species during the summers of 2006, 2007 and 2009. We found that the species assemblages differed significantly between high stumps and logs all three years. The species assemblages of low stumps, on the other hand, were intermediate to those found in logs and high stumps. There were also significant difference in species richness between the three examined years, and we found significant effect of substrate type on richness of predators and fungivores. As shown in previous studies of low stumps on clear-cuts they can sustain large numbers of different saproxylic beetles, including red-listed species. Our study does, in addition to this fact, highlight a possible problem in creating just one type of substrate as a tool for conservation in forestry. Species assemblages in high stumps did not differ significantly from those found in low stumps. Instead logs, which constitute a scarcer substrate type on clear-cuts, provided habitat for a more distinct assemblage of saproxylic species than high stumps. It can therefore be questioned whether high stumps are an optimal tool for nature conservation in clear-cutting forestry. Our results also indicate that low stumps constitute an equally important substrate as high stumps and logs, and we therefore suggest that stump harvesting is done after carefully evaluating measures to provide habitat for saproxylic organisms.


Subject(s)
Coleoptera/physiology , Animal Distribution , Animals , Conservation of Natural Resources , Ecosystem , Forestry , Norway , Seasons , Wood
13.
PLoS One ; 8(9): e73819, 2013.
Article in English | MEDLINE | ID: mdl-24040084

ABSTRACT

Genetic modifications of trees may provide many benefits, e.g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e.g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction probably less pronounced effect on targeted herbivores.


Subject(s)
Coleoptera/physiology , Disease Resistance/genetics , Populus/genetics , Populus/parasitology , Animals , Chromatography, High Pressure Liquid , Feeding Behavior/physiology , Glycosides/analysis , Host-Parasite Interactions , Hybridization, Genetic , Phenols/analysis , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/parasitology , Plants, Genetically Modified , Populus/chemistry , Quercetin/analogs & derivatives , Quercetin/analysis
14.
PLoS One ; 8(8): e72764, 2013.
Article in English | MEDLINE | ID: mdl-23977350

ABSTRACT

Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.


Subject(s)
Biodiversity , Coleoptera/physiology , Animals , Models, Theoretical , Regression Analysis , Species Specificity , Sweden
15.
Ambio ; 42(2): 229-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23475658

ABSTRACT

Assessing ecological sustainability involves monitoring of indicators and comparison of their states with performance targets that are deemed sustainable. First, a normative model was developed centered on evidence-based knowledge about (a) forest composition, structure, and function at multiple scales, and (b) performance targets derived by quantifying the habitat amount in naturally dynamic forests, and as required for presence of populations of specialized focal species. Second, we compared the Forest Stewardship Council (FSC) certification standards' ecological indicators from 1998 and 2010 in Sweden to the normative model using a Specific, Measurable, Accurate, Realistic, and Timebound (SMART) indicator approach. Indicator variables and targets for riparian and aquatic ecosystems were clearly under-represented compared to terrestrial ones. FSC's ecological indicators expanded over time from composition and structure towards function, and from finer to coarser spatial scales. However, SMART indicators were few. Moreover, they poorly reflected quantitative evidence-based knowledge, a consequence of the fact that forest certification mirrors the outcome of a complex social negotiation process.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forestry/standards , Sweden
16.
PLoS One ; 7(7): e41100, 2012.
Article in English | MEDLINE | ID: mdl-22848432

ABSTRACT

Restoration of habitats is critically important in preventing full realization of the extinction debt owed as a result of anthropogenic habitat destruction. Although much emphasis has been placed on macrohabitats, suitable microhabitats are also vital for the survival of most species. The aim of this large-scale field experiment was to evaluate the relative importance of manipulated microhabitats, i.e., dead wood substrates of spruce (snags, and logs that were burned, inoculated with wood fungi or shaded) and macrohabitats, i.e., stand types (clear-cuts, mature managed forests, and forest reserves) for species richness, abundance and assemblage composition of all saproxylic and red-listed saproxylic beetles. Beetles were collected in emergence traps in 30 forest stands in 2001, 2003, 2004 and 2006. More individuals emerged from snags and untreated logs than from burned and shaded logs, but species richness did not differ among substrates. Assemblage composition differed among substrates for both all saproxylics and red-listed saproxylic species, mainly attributed to different assemblage composition on snags. This suggests that the practise of leaving snags for conservation purposes should be complemented with log supplementation. Clear-cuts supported fewer species and different assemblages from mature managed forests and reserves. Neither abundance, nor species richness or assemblage composition differed between reserves and mature managed forests. This suggests that managed stands subjected to selective cutting, not clear-felling, maintain sufficient old growth characteristics and continuity to maintain more or less intact assemblages of saproxylic beetles. Thus, alternative management methods, e.g., continuity forestry should be considered for some of these stands to maintain continuity and conservation values. Furthermore, the significantly higher estimated abundance per ha of red-listed beetles in reserves underlines the importance of reserves for maintaining viable populations of rare red-listed species and as source areas for saproxylic species in boreal forest landscapes.


Subject(s)
Biodiversity , Coleoptera/physiology , Models, Biological , Trees , Wood , Animals
17.
PLoS One ; 7(1): e30640, 2012.
Article in English | MEDLINE | ID: mdl-22292004

ABSTRACT

One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Toxins/genetics , Coleoptera/pathogenicity , Disease Resistance/genetics , Plant Diseases/prevention & control , Populus/growth & development , Populus/genetics , Animals , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Coleoptera/drug effects , Coleoptera/physiology , Gene Transfer Techniques , Host-Parasite Interactions/genetics , Insecticides/metabolism , Insecticides/pharmacology , Models, Theoretical , Plant Diseases/genetics , Plant Diseases/parasitology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/parasitology , Random Allocation , Survival , Up-Regulation
18.
Oecologia ; 167(4): 1063-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21660581

ABSTRACT

Carbon-based secondary metabolites (CBSMs) are assumed to function as defences that contribute to herbivore-avoidance strategies of woody plants. Severe browsing has been reported to reduce concentrations of CBSMs and increase N concentrations in individual plants, causing heavily browsed plants to be characterised by N-rich/C-poor tissues. We hypothesised that concentrations of condensed tannins (CT) and total polyphenols (TP) should decrease, or N increase, in relation to increasing intensity of browsing, rendering severely browsed plants potentially more palatable (increased N:CT) and less N-limited (increased N:P) than lightly browsed ones. We sampled naturally browsed trees (taller than 2 m) of four abundant species in southern Kruger National Park, South Africa. Species-specific relationships between N:CT, CT, TP and P concentrations and increasing browsing intensity were detected, but N and N:P were consistently invariable. We developed a conceptual post-hoc model to explain diverse species-specific CBSM responses on the basis of relative allocation of C to total C-based defence traits (e.g. spines/thorns, tough/evergreen leaves, phenolic compounds). The model suggests that species with low allocation of C to C-based defence traits become C-limited (potentially more palatable) at higher browsing intensity than species with high allocation of C to C-based defences. The model also suggests that when N availability is high, plants become C-limited at higher browsing intensity than when N availability is low.


Subject(s)
Combretaceae/growth & development , Fabaceae/growth & development , Herbivory , Malvaceae/growth & development , Plant Leaves/chemistry , Carbon/analysis , Carbon/metabolism , Combretaceae/chemistry , Combretaceae/metabolism , Ecosystem , Fabaceae/chemistry , Fabaceae/metabolism , Malvaceae/chemistry , Malvaceae/metabolism , Models, Biological , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Polyphenols/analysis , Polyphenols/metabolism , South Africa , Tannins/analysis , Tannins/metabolism , Trees/chemistry , Trees/growth & development , Trees/metabolism
19.
Phytochemistry ; 72(14-15): 1796-803, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21621803

ABSTRACT

Low molecular weight phenolics are suggested to have a role in mediating diet selection in mammalian herbivores. However, very little is known about low molecular weight phenolic profiles of African savanna woody species. We determined low molecular weight phenolic profiles of six woody species with different life history, morphological and functional traits. We investigated interspecific phytochemical variation between species and found that: (1) related Acacia species were chemically dissimilar; (2) similarity percentage analysis revealed that Acacia grandicornuta was most dissimilar from other species and that the evergreen and unpalatable Euclea divinorum had a qualitatively similar chemical profile to the deciduous and palatable Acacia exuvialis and Combretum apiculatum; (3) C. apiculatum had the highest chemical diversity; (4) relative to spineless plants, spinescent plants contained significantly less HPLC phenolics and condensed tannins; and (5) the major quantitative difference between the evergreen and unpalatable E. divinorum and other species was its high myricitrin concentration.


Subject(s)
Acacia/chemistry , Combretum/chemistry , Ebenaceae/chemistry , Flavonoids/analysis , Phenols/chemistry , Animals , Chromatography, High Pressure Liquid , Herbivory/drug effects , Phenols/analysis , Plant Leaves/chemistry , South Africa , Tannins/analysis , Trees/chemistry
20.
PLoS One ; 5(10): e13237, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20949062

ABSTRACT

Many species use coarse woody debris (CWD) and are disadvantaged by the forestry-induced loss of this resource. A neglected process affecting CWD is the covering of the surfaces of downed logs caused by sinking into the ground (increasing soil contact, mostly covering the underside of the log), and dense overgrowth by ground vegetation. Such cover is likely to profoundly influence the quality and accessibility of CWD for wood-inhabiting organisms, but the factors affecting covering are largely unknown. In a five-year experiment we determined predictors of covering rate of fresh logs in boreal forests and clear-cuts. Logs with branches were little covered because they had low longitudinal ground contact. For branchless logs, longitudinal ground contact was most strongly related to estimated peat depth (positive relation). The strongest predictor for total cover of branchless logs was longitudinal ground contact. To evaluate the effect on cover of factors other than longitudinal ground contact, we separately analyzed data from only those log sections that were in contact with the ground. Four factors were prominent predictors of percentage cover of such log sections: estimated peat depth, canopy shade (both increasing cover), potential solar radiation calculated from slope and slope aspect, and diameter of the log (both reducing cover). Peat increased cover directly through its low resistance, which allowed logs to sink and soil contact to increase. High moisture and low temperatures in pole-ward facing slopes and under a canopy favor peat formation through lowered decomposition and enhanced growth of peat-forming mosses, which also proved to rapidly overgrow logs. We found that in some boreal forests, peat and fast-growing mosses can rapidly cover logs lying on the ground. When actively introducing CWD for conservation purposes, we recommend that such rapid covering is avoided, thereby most likely improving the CWD's longevity as habitat for many species.


Subject(s)
Ecology , Trees , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...