Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int Immunopharmacol ; 136: 112306, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833843

ABSTRACT

A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.

2.
Mol Biol Rep ; 51(1): 629, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717637

ABSTRACT

It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.


Subject(s)
Autoimmune Diseases , B-Lymphocytes , Lymphocyte Depletion , Humans , B-Lymphocytes/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Lymphocyte Depletion/methods , Antigens, CD20/immunology , Antigens, CD19/immunology , Animals , B-Cell Activating Factor/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy
3.
Mol Biol Rep ; 51(1): 615, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704760

ABSTRACT

A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.


Subject(s)
Apoptosis , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Apoptosis/genetics , Tumor Microenvironment/genetics , Cell Movement/genetics , Signal Transduction/genetics , Drug Resistance, Neoplasm/genetics
4.
Heliyon ; 10(10): e31066, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784539

ABSTRACT

Background: Night shift duties are crucial in the ICU to ensure care continuity, where critically ill patients require round-the-clock care. However, cumulative night shift duties may disturb circadian rhythm, insomnia, fatigue, and depression, and require further elucidation. Objectives: This study aims to examine the negative consequences of various night shift patterns on insomnia, fatigue, and mental health of ICU Workers. Methods: A cross-sectional study examined how cumulative night shift duty affects insomnia, fatigue, and mental health in critical care providers (CCPs). Results: A total of 1006 participants completed this study between June 2022 and March 2023, including 54.5 % males. About 35 % were between 20 and 30 years of age, and Respiratory Therapists accounted for approximately 46.5 % of the entire sample. Most of our respondents (476; 47 %) reported working night shifts, with a monthly range of 8-15 nights. The prevalence rates for moderate to severe clinical insomnia, fatigue, and moderate to severe depression were 42 %, 48 %, and 32 %, respectively. CCPs working 8-15 nights had a 2-fold risk of clinical insomnia than those working fewer than eight nights with (AOR) and 95 % (CI) of 2.12 and 1.41-3.20, while those working ≥16 nights per month had a greater incidence of clinical insomnia compared to those working <8 nights per month, AOR (CI): 3.09 (1.90-5.03). Only those working ≥16-night shifts per month had a substantially higher fatigue risk compared to those working < 8-night shifts per month, with an AOR (CI) of 1.92 (1.19-3.08). Working 8-15-night shifts per month increases depression risks by 34 % compared to the <8-night shifts group, AOR (CI): 1.34 (0.87-2.08). Those working ≥16-night shifts per month showed a higher depression risk than those working <8-night shifts, AOR (CI): 2.53 (1.53-4.19). Conclusion: A cumulative night shift above eight nights per month is linked with an increased risk of insomnia, fatigue, and depression. The risk of these conditions was significantly directly proportional to the number of night shifts performed per month.

5.
Cell Biochem Biophys ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750383

ABSTRACT

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.

6.
J Appl Genet ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753266

ABSTRACT

The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.

7.
Cell Biochem Biophys ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806965

ABSTRACT

The advancement of novel technologies, coupled with bioinformatics, has led to the discovery of additional genes, such as long noncoding RNAs (lncRNAs), that are associated with drug resistance. LncRNAs are composed of over 200 nucleotides and do not possess any protein coding function. These lncRNAs exhibit lower conservation across species, are typically expressed at low levels, and often display high specificity towards specific tissues and developmental stages. The LncRNA MALAT1 plays crucial regulatory roles in various aspects of genome function, encompassing gene transcription, splicing, and epigenetics. Additionally, it is involved in biological processes related to the cell cycle, cell differentiation, development, and pluripotency. Recently, MALAT1 has emerged as a novel mechanism contributing to drug resistance or sensitivity, attracting significant attention in the field of cancer research. This review aims to explore the mechanisms through which MALAT1 confers resistance to chemotherapy and radiotherapy in cancer cells.

8.
Tissue Cell ; 88: 102419, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38810349

ABSTRACT

One of the serious challenges in diabetic patients is the occurrence of complications caused by the disease. One of the most important side effects is wounding in limbs. Due to the multifactorial nature of these wounds, treatments require a multifaceted approach. Therefore, the aim of the present study was whether the human amniotic membrane (HAM) in combination with menstrual blood-derived stem cells (MenSCs) could promote wound healing in diabetic rats. Thirty days after induction of diabetes, the animals were randomly allocated into four equal groups (n=15): the control group, HAM group, MenSC group, and HAM+MenSC group. Sampling was done on days 7, 14, and 21 for histological, molecular, and tensiometrical evaluations. The results showed that the wound healing rate, collagen deposition, volumes of new epidermis and dermis, as well as tensiometrical characteristics were significantly increased in the treatment groups compared to the control group, and these changes were more obvious in the HAM+MenSC ones (P<0.05). Moreover, the expression levels of TGF-ß, bFGF, and VEGF genes were considerably increased in treatment groups compared to the control group and were greater in the HAM+MenSC group (P<0.05). This is while expression levels of TNF-α and IL-1ß decreased more significantly in the HAM+MenSC group than the other groups (P<0.05). We concluded that the combined use of HAM and MenSCs has a more significant effect on diabetic wound healing.

9.
Int J Biol Macromol ; 271(Pt 2): 132547, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782322

ABSTRACT

Nanocatalysts play a vital role in chemical reactions, energy conservation, and pollution control. They significantly contribute to organic synthesis by using natural polymers as nanoparticle substrates in nanocatalysts. Natural hydrogels made from polysaccharide and/or protein sources may be used to accomplish this. Recent research has focused on using layered double-hydroxides (LDHs) in composites having catalytic properties. Magnetic features of the catalyst allow its extraction from the environment using a magnet after the reaction, improving product efficiency. This work developed a catalyst for producing physiologically relevant polyhydroquinoline derivatives using a novel magnetic nanocomposite containing natural cellulose-gellan gum hydrogel and MgAl LDH. The Cell-GG hydrogel/MgAl LDH/Fe3O4 nanocomposite showed over 90 % efficiency in one-pot production of polyhydroquinoline derivatives by asymmetric Hantzsch condensation. Dimedone, ammonium acetate, ethyl acetoacetate, and different substituted aldehydes were employed in successive processes to create polyhydroquinoline derivatives. High product efficiency, quick reaction time, room temperature functioning, and easy separation with a magnet suggest a potent catalyst. Interestingly, the catalyst retains 80 % of its original capability after four cycles. Additionally, the Cell-GG hydrogel/MgAl LDH/Fe3O4 nanocomposite was analyzed using several methods, including FT-IR, FE-SEM, EDX, XRD, VSM and TGA, to obtain insight into its chemical and physical characteristics.

10.
Cell Biochem Funct ; 42(3): e4018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644608

ABSTRACT

Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.


Subject(s)
Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Apoptosis , Gene Expression Regulation, Neoplastic , Cell Movement
11.
Tissue Cell ; 88: 102378, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38663114

ABSTRACT

Traumatic spinal cord injury (TSCI) is one of the catastrophic events in the nervous system that leads to the loss of sensory and motor function of the spinal cord at the site of injury. Considering that several factors such as apoptosis, inflammation, and oxidative stress play a role in the spread of damage caused by trauma, therefore, the treatment should also be based on multifactorial approaches. Currently, we investigated the effects of human menstrual blood stem cells (MenSCs)-derived exosomes in combination with hyperbaric oxygen therapy (HBOT) in the recovery of TSCI in rats. Ninety male mature Sprague-Dawley (SD) rats were planned into five equal groups, including; control group, TSCI group, Exo group (underwent TSCI and received MenSCs -derived exosomes), HBOT group (underwent TSCI and received HBOT), and Exo+HBOT group (underwent TSCI and received MenSCs -derived exosomes plus HBOT). After the behavioral evaluation, tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular assessments. Our results showed that the numerical density of neurons, the concentrations of antioxidative biomarkers (CAT, GSH, and SOD), and neurological function scores were significantly greater in the treatments group than in the TSCI group, and these changes were more obvious in the Exo+HBOT ones (P<0.05). This is while the numerical densities of apoptotic cells and glial cells, the levels of an oxidative factor (MDA) and proinflammatory cytokines (IL-1ß and TNF-α) were considerably decreased in the treatment groups, specially the Exo+HBOT group, compared to the TSCI group (P<0.05). We conclude that the co-administration of exosomes derived from MenSCs and HBOT has more neuroprotective effects in animals with TSCI.

12.
Cell Biochem Funct ; 42(3): e4006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622913

ABSTRACT

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Animals , Humans , Cell Proliferation/genetics , Fibrosis , Liver Cirrhosis/genetics , Mammals/genetics , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
13.
Toxicon ; 243: 107720, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38614244

ABSTRACT

AIM: This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS: Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS: The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION: Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.


Subject(s)
Carcinoma, Hepatocellular , Colforsin , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Liver Neoplasms , Metformin , Oxidative Stress , Rats, Wistar , Animals , Metformin/pharmacology , Oxidative Stress/drug effects , Colforsin/pharmacology , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Drug Synergism , Blood Glucose , Malondialdehyde/blood
14.
Pathol Res Pract ; 257: 155288, 2024 May.
Article in English | MEDLINE | ID: mdl-38653088

ABSTRACT

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Subject(s)
Cancer Vaccines , Dendritic Cells , Exosomes , Exosomes/immunology , Humans , Dendritic Cells/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Digestive System Neoplasms/immunology , Digestive System Neoplasms/therapy , Digestive System Neoplasms/pathology , Animals , Immunotherapy/methods
15.
Pathol Res Pract ; 257: 155284, 2024 May.
Article in English | MEDLINE | ID: mdl-38663179

ABSTRACT

The cancer cells that are not normal can grow into tumors, invade surrounding tissues, and travel to other parts of the body via the lymphatic or circulatory systems. Interleukins, a vital class of signaling proteins, facilitate cell-to-cell contact within the immune system. A type of non-coding RNA known as lncRNAs mediates its actions by regulating miRNA-mRNA roles (Interleukins). Because of their dual function in controlling the growth of tumors and altering the immune system's response to cancer cells, interleukins have been extensively studied concerning cancer. Understanding the complex relationships between interleukins, the immune system, the tumor microenvironment, and the components of interleukin signaling pathways that impact the miRNA-mRNA axis, including lncRNAs, has advanced significantly in cancer research. Due to the significant and all-encompassing influence of interleukins on the immune system and the development and advancement of cancers, lncRNAs play a crucial role in cancer research by modulating interleukins. Their diverse effects on immune system regulation, tumor growth encouragement, and tumor inhibition make them appealing candidates for potential cancer treatments and diagnostics. A deeper understanding of the relationship between the biology of interleukin and lncRNAs will likely result in more effective immunotherapy strategies and individualized cancer treatments.


Subject(s)
Interleukins , Neoplasms , RNA, Long Noncoding , Tumor Microenvironment , Animals , Humans , Gene Expression Regulation, Neoplastic , Interleukins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/physiology , Tumor Microenvironment/immunology
16.
Med Oncol ; 41(5): 125, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652207

ABSTRACT

Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this comprehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immunomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the toxicology of ZER has been summarized to support its safety profile.


Subject(s)
Glioma , Neoplasms , Sesquiterpenes , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Glioma/drug therapy , Neoplasms/drug therapy , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , Zingiberaceae/chemistry
17.
J Thromb Haemost ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608731

ABSTRACT

BACKGROUND: Carfilzomib (CFZ) is a second-generation proteasome inhibitor used to treat multiple myeloma. Potent inhibition of the proteasome results in chronic proteotoxic endoplasmic reticulum (ER) stress, leading to apoptosis. While CFZ has improved survival rates in multiple myeloma, it is associated with an increased risk of cardiovascular adverse effects. While this has been putatively linked to cardiotoxicity, CFZ could potentially also exhibit adverse effects on the endothelium. OBJECTIVES: To investigate the effects of CFZ on the endothelium. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with CFZ, and expression of relevant markers of ER stress, inflammation, and thrombosis was measured and functionally assessed. RESULTS: CFZ failed to induce ER stress in HUVECs but induced the expression of Kruppel-like factor 4, endothelial nitric oxide synthase, tissue plasminogen activator, and thrombomodulin and reduced tumor necrosis factor alpha (TNFα)-mediated intercellular adhesion molecule 1 and tissue factor expression, suggesting a potential protective effect on the endothelium. Consistent with these observations, CFZ reduced leukocyte adhesion under shear stress and reduced factor Xa generation and fibrin clot formation on the endothelium following TNFα treatment and inhibited von Willebrand factor (VWF) and angiopoietin-2 exocytosis from Weibel-Palade bodies. Subsequently, CFZ inhibited the formation of VWF-platelet strings, and moreover, media derived from myeloma cell lines induced VWF release, a process also inhibited by CFZ. CONCLUSION: These data demonstrate that CFZ is unable to induce ER stress in confluent resting endothelial cells and can conversely attenuate the prothrombotic effects of TNFα on the endothelium. This study suggests that CFZ does not negatively alter HUVECs, and proteasome inhibition of the endothelium may offer a potential way to prevent thrombosis.

18.
Pathol Res Pract ; 256: 155261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518733

ABSTRACT

Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Exosomes/metabolism , Neoplasms/pathology , Macrophages/pathology , Cell Proliferation , Tumor Microenvironment/genetics
19.
Cell Biochem Funct ; 42(2): e3978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515237

ABSTRACT

Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.


Subject(s)
Cancer Vaccines , Ovarian Neoplasms , Humans , Female , Nucleic Acid-Based Vaccines , Ovarian Neoplasms/drug therapy , Antigens, Neoplasm , Cancer Vaccines/therapeutic use
20.
Pathol Res Pract ; 256: 155189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452581

ABSTRACT

When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.


Subject(s)
Liver Neoplasms , RNA, Long Noncoding , Humans , Cell Movement/genetics , Liver Neoplasms/genetics , Microfilament Proteins/metabolism , Neoplasm Invasiveness/pathology , Neoplasm Proteins/metabolism , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...