Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 256: 119221, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795951

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ effector memory (EM) phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.


Subject(s)
Fluorocarbons , Killer Cells, Natural , Humans , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Adult , Female , Middle Aged , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Norway , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/blood , Aged
2.
Environ Res ; 222: 115377, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36709869

ABSTRACT

Exposure to phthalates is widespread in Europe. Phthalates are considered endocrine disrupting compounds and are classified as toxic for reproduction. However how phthalates affect the transcriptome in humans remains largely unknown. To investigate the effects of phthalate exposure on the transcriptomic profile we conducted RNA sequencing on peripheral blood samples from the Norwegian EuroMix cohort. We compared gene expression changes between participants with high, medium, and low exposure of six phthalates and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). Comparing high and low exposure groups, DINCH was the compound that showed the highest number of differentially expressed genes (126 genes) followed by mono-n-butyl phthalate (MnBP; 89 genes) and mono-iso-nonyl phthalate (MiBP; 70 genes). Distributions between up- or down-regulated genes were similar across the different phthalates and DINCH. All phthalates including DINCH shared common differentially expressed genes ranging from 3 to 37 overlaps. Enriched Gene Ontology (GO) and biological pathway analysis revealed that most of the differentially expressed genes were associated with general cellular metabolism GO terms. MnBP and DINCH, particularly, showed a marked enrichment in various immunological function pathways including neutrophil degranulation, adaptive immune system and signaling by interleukins. Furthermore, the association between genes involved in the peroxisome proliferator activated receptor (PPAR) signaling pathway and phthalates, including DINCH, was evaluated. In total, 15 genes showed positive or negative associations across 5 phthalates and DINCH. MnBP and MiBP were the phthalate metabolites with the highest number of associations: 8 and 4 PPAR signaling pathway genes, respectively. Overall, we have performed an association study between phthalate exposure levels and modulation of transcriptomic profiles in human peripheral blood cells. DINCH, which is often mentioned as a substitute for phthalates, had comparable effects on differential gene expression in peripheral blood cells as phthalates.


Subject(s)
Environmental Pollutants , Phthalic Acids , Humans , Environmental Exposure/analysis , Peroxisome Proliferator-Activated Receptors , Dicarboxylic Acids , Reproduction
3.
Environ Int ; 146: 106283, 2021 01.
Article in English | MEDLINE | ID: mdl-33395934

ABSTRACT

BACKGROUND: Phthalate exposure has been associated with immune-related diseases such as asthma and allergies, but there is limited knowledge on mechanisms, effect biomarkers and thus biological support of causality. OBJECTIVES: To investigate associations between exposure to the phthalates DEHP (di(2-ethylhexyl) phthalate) and DiNP (diisononyl phthalate) and functional immune cell profiles. METHODS: Peripheral blood mononuclear cells (PBMCs) from 32 healthy adult Norwegian participants in the EuroMix biomonitoring study were selected based on high or low (n = 16) levels of urine metabolites of DEHP and DiNP. High-dimensional immune cell profiling including phenotyping and functional markers was performed by mass cytometry (CyTOF) using two broad antibody panels after PMA/ionomycin-stimulation. The CITRUS algorithm with unsupervised clustering was used to identify group differences in cell subsets and expression of functional markers, verified by manual gating. RESULTS: The group of participants with high phthalate exposure had a higher proportion of some particular innate immune cells, including CD11c positive NK-cell and intermediate monocyte subpopulations. The percentage of IFNγ TNFα double positive NK cells and CD11b expression in other NK cell subsets were higher in the high exposure group. Among adaptive immune cells, however, the percentage of IL-6 and TNFα expressing naïve B cell subpopulations and the percentage of particular naïve cytotoxic T cell populations were lower in the high exposure group. DISCUSSION: Cell subset percentages and expression of functional markers suggest that DEHP and DiNP phthalate exposure may stimulate subsets of innate immune cells and suppress adaptive immune cell subsets. By revealing significant immunological differences even in small groups, this study illustrates the promise of the broad and deep information obtained by high-dimensional single cell analyses of human samples to answer toxicological questions regarding health effects of environmental exposures.


Subject(s)
Environmental Pollutants , Phthalic Acids , Adult , Biological Monitoring , Environmental Exposure/analysis , Environmental Pollutants/toxicity , Humans , Leukocytes, Mononuclear , Norway , Phthalic Acids/toxicity
4.
EFSA J ; 18(Suppl 1): e181105, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33294044

ABSTRACT

Phthalates are a group of diesters of phthalic acid and have been widely used by the industry as plasticisers giving flexibility and durability to polyvinyl chloride (PVC) plastics. Commonly their uses vary from plasticisers in food contact materials and toys to emulsifying agents in personal care products. Phthalates are not covalently bound to PVC, thus they can migrate into the air, skin, water, food and the environment. The omnipresence of phthalates results in human exposure via multiple pathways such as dermal, oral and inhalation for prolonged periods. There is evidence that phthalates can induce disruption in oestrogenic activity, reproductive, developmental and liver toxicity both in experimental animals and potentially in humans. The aim of this technical report is to summarise the activities of the fellow performed at the Norwegian Institute of Public Health (NIPH). The goals of the work programme were collecting concentration levels on five specific phthalates from the scientific literature and combining them with consumption/use data reported in a biomonitoring study part of a Horizon 2020 project (EuroMix), and finally, estimate the aggregate phthalate exposure from food and personal care products and compare them with the measured phthalate levels in urine samples collected in the biomonitoring study.

5.
Toxicol Rep ; 4: 104-112, 2017.
Article in English | MEDLINE | ID: mdl-28959631

ABSTRACT

Pristane and other adjuvants based on mineral oil saturated hydrocarbons (MOSH) may induce autoimmunity in rodents after intradermal injection; however there is a lack of information on immune effects after oral MOSH exposure. The aim of our study was to determine the impact of dietary exposure to pristane and other MOSH on the development of autoimmune arthritis. Dark Agouti (DA) rats were given feed containing 4000 mg/kg pristane or a broad MOSH mixture in various concentrations (0-4000 mg/kg) for 90 days, or a single intradermal injection of 200 µl pristane (positive control). Arthritis scores, and serum and splenocyte markers previously associated with arthritis development, were determined. All rats injected with pristane displayed arthritis symptoms and higher levels of certain serum markers. None of the rats fed pristane or MOSH developed arthritis symptoms or demonstrated clear changes in any measured arthritis-associated biological markers in serum or splenocytes. The absence of clinical arthritis symptoms or any increase in common arthritis-associated biological markers in sera and spleen following dietary exposure to pristane or a broad MOSH mixture in a sub-chronic rat model of arthritis suggest that dietary MOSH have low capacity to promote development of autoimmunity.

6.
Toxicol Lett ; 248: 34-8, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-26940682

ABSTRACT

Food processing contaminant 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has previously been shown to induce formation of DNA adducts in vivo. In a previous study the adduct levels were found to increase in a mouse model expressing human (h) sulfotransferases (SULTs) 1A1 and 1A2 after PhIP exposure, detected by (32)P-postlabelling. Isotope dilution ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) is emerging as the method of choice for selective and reproducible detection of known DNA adducts. In the present study we investigated the level and distribution of PhIP induced DNA adducts in male FVB mice 9-11 weeks of age with hSULT mice or wild-type mice (wt) using UPLC-MS/MS. Mice received a single administration of 75 mg/kg bw PhIP by oral gavage, and DNA was analysed 3h after exposure. C8-(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine- N(2)-yl)-2'-deoxyguanosine (C8-PhIP-dG) adduct levels are significantly higher in PhIP exposed hSULT mice compared with PhIP exposed wt mice. The liver was the least affected organ in wild-type mice, whereas it was the most affected organ in hSULT mice with a 14-fold higher adduct level.


Subject(s)
Arylsulfotransferase/genetics , DNA Adducts/pharmacokinetics , Food Contamination , Imidazoles/pharmacokinetics , Imidazoles/toxicity , Mutagens/toxicity , Administration, Oral , Animals , Chromatography, High Pressure Liquid , Humans , Male , Mice , Mice, Transgenic , Mutagens/pharmacokinetics , Organ Specificity , Tandem Mass Spectrometry , Tissue Distribution
7.
Mutagenesis ; 30(5): 643-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25904584

ABSTRACT

Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250 mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC-MS/MS). Surprisingly, low levels of adducts that may represent N (2)-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N (2)-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine.


Subject(s)
Arylsulfotransferase/genetics , DNA Adducts/analysis , Furans/toxicity , Animals , Chromatography, Liquid , DNA/drug effects , Furans/metabolism , Inactivation, Metabolic , Male , Mice , Tandem Mass Spectrometry , Tissue Distribution
8.
Lab Anim ; 46(3): 207-14, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22522416

ABSTRACT

A large variation in spontaneous tumour development in the multiple intestinal neoplasia (Min) mouse model between laboratories has been reported. The composition of the diet might be an important factor. We examined the impact of five commercial rodent diets: the natural ingredient breeding diet Harlan Teklad 2018 (HT), the purified breeding diet AIN93G, the natural ingredient maintenance diet RM1, and the purified maintenance diets AIN93M and AIN76A, on the spontaneous intestinal tumorigenesis in the Min mouse model. The Min mice were fed one of two breeding diets during gestation and until four weeks of age, thereafter one of the three maintenance diets. Min mice bred on the breeding diet HT had significantly higher numbers and incidences of tumours in the colon, but fewer tumours in the small intestine than the breeding diet AIN93G. The maintenance diet RM1 gave a significantly higher number of small intestinal and colonic tumours and precancerous lesions called flat aberrant crypt foci (ACF) compared with the maintenance diets AIN93M and AIN76A. These findings show the importance of defining the type of diet used in experimental intestinal carcinogenesis studies, and that the diet should be taken into consideration when comparing results from different studies with Min mice.


Subject(s)
Aberrant Crypt Foci/pathology , Animal Feed/analysis , Carcinogens/analysis , Disease Susceptibility , Intestinal Neoplasms/pathology , Precancerous Conditions/pathology , Animals , Diet , Female , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains
9.
Mol Carcinog ; 51(12): 984-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22006426

ABSTRACT

Humans express sulfotransferases (SULTs) of the SULT1A subfamily in many tissues, whilst the single SULT1A gene present in rodents is mainly expressed in liver. The food processing contaminants, 5-hydroxymethylfurfural (HMF) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), are bioactivated by human SULT1A1 and SULT1A2. FVB multiple intestinal neoplasia (Min) mice, which spontaneously develop tumors and flat aberrant crypt foci (ACF) in intestine, were crossed with transgenic FVB mice expressing human SULT1A1 and 1A2 (hSULT) in several tissues, giving rise to wild-type and Min mice with and without hSULT. One-week-old Min mice with or without hSULT were given HMF (375 or 750 mg/kg bw) or saline by gavage three times a week for 11 wk. In another experiment, the F1 generation received subcutaneous injections of 50 mg/kg bw PhIP or saline 1 wk before birth, and 1, 2, and 3 wk after birth. HMF did not affect the formation of tumors, but may have induced some flat ACF (incidence 15-20%) in Min mice with and without hSULT. No control mouse developed any flat ACF. With the limitation that these putative effects were weak, they were unaffected by hSULT expression. The carcinogenic effect of PhIP increased in the presence of hSULT, with a significant increase in both incidence (31-80%) and number of colonic tumors (0.4-1.3 per animal). Thus, intestinal expression of human SULT1A1 and 1A2 might increase the susceptibility to compounds bioactivated via this pathway implying that humans might be more susceptible than conventional rodent models.


Subject(s)
Carcinogens/toxicity , Food Handling , Furaldehyde/analogs & derivatives , Imidazoles/toxicity , Intestinal Neoplasms/chemically induced , Sulfotransferases/genetics , Animals , Furaldehyde/toxicity , Humans , Intestinal Neoplasms/enzymology , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...