Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nature ; 626(8000): 737-741, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879361

ABSTRACT

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4-6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7-12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.

2.
Science ; 380(6649): eabh1322, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37167351

ABSTRACT

The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer [Formula: see text]. Using the two models most consistent with the observations, we find [Formula: see text]. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.

3.
Science ; 380(6643): 416-420, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37053263

ABSTRACT

Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z = 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of [Formula: see text] parsecs, which is substantially more compact than galaxies with equivalent luminosity at z ~ 6 to 8, leading to a high star formation rate surface density.

4.
Science ; 347(6226): 1123-6, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25745167

ABSTRACT

In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

6.
Nature ; 515(7528): 528-30, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25428499

ABSTRACT

The active galaxy NGC 4151 has a crucial role as one of only two active galactic nuclei for which black hole mass measurements based on emission line reverberation mapping can be calibrated against other dynamical techniques. Unfortunately, effective calibration requires accurate knowledge of the distance to NGC 4151, which is not at present available. Recently reported distances range from 4 to 29 megaparsecs. Strong peculiar motions make a redshift-based distance very uncertain, and the geometry of the galaxy and its nucleus prohibit accurate measurements using other techniques. Here we report a dust-parallax distance to NGC 4151 of 19.0(+2.4)(-2.6) megaparsecs. The measurement is based on an adaptation of a geometric method that uses the emission line regions of active galaxies. Because these regions are too small to be imaged with present technology, we use instead the ratio of the physical and angular sizes of the more extended hot-dust emission as determined from time delays and infrared interferometry. This distance leads to an approximately 1.4-fold increase in the dynamical black hole mass, implying a corresponding correction to emission line reverberation masses of black holes if they are calibrated against the two objects with additional dynamical masses.

7.
Nature ; 511(7509): 326-9, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25030169

ABSTRACT

The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

8.
Philos Trans A Math Phys Eng Sci ; 371(1992): 20120275, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23630379

ABSTRACT

The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

9.
Nature ; 477(7366): 567-9, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21956329

ABSTRACT

The theoretical framework of cosmology is mainly defined by gravity, of which general relativity is the current model. Recent tests of general relativity within the Lambda Cold Dark Matter (ΛCDM) model have found a concordance between predictions and the observations of the growth rate and clustering of the cosmic web. General relativity has not hitherto been tested on cosmological scales independently of the assumptions of the ΛCDM model. Here we report an observation of the gravitational redshift of light coming from galaxies in clusters at the 99 per cent confidence level, based on archival data. Our measurement agrees with the predictions of general relativity and its modification created to explain cosmic acceleration without the need for dark energy (the f(R) theory), but is inconsistent with alternative models designed to avoid the presence of dark matter.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 1): 022106, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352070

ABSTRACT

In the framework of nonextensive statistical mechanics, the equilibrium structures of astrophysical self-gravitating systems are stellar polytropes, parametrized by the polytropic index n . By careful comparison to the structures of simulated dark-matter halos we find that the density profiles, as well as other fundamental properties, of stellar polytropes are inconsistent with simulations for any value of n . This result suggests the need to reconsider the applicability of nonextensive statistical mechanics (in its simplest form) to equilibrium self-gravitating systems.

11.
Nature ; 444(7122): 1047-9, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17183316

ABSTRACT

It is now accepted that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. The standard 'collapsar' model predicts that a broad-lined and luminous type Ic core-collapse supernova accompanies every long-duration GRB. This association has been confirmed in observations of several nearby GRBs. Here we report that GRB 060505 (ref. 10) and GRB 060614 (ref. 11) were not accompanied by supernova emission down to limits hundreds of times fainter than the archetypal supernova SN 1998bw that accompanied GRB 980425, and fainter than any type Ic supernova ever observed. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in actively star-forming regions. The absence of a supernova to such deep limits is qualitatively different from all previous nearby long-duration GRBs and suggests a new phenomenological type of massive stellar death.

13.
Nature ; 437(7060): 859-61, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16208365

ABSTRACT

It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.

15.
J Phys Chem A ; 109(23): 5104-18, 2005 Jun 16.
Article in English | MEDLINE | ID: mdl-16833864

ABSTRACT

The rate coefficients for the gas phase reaction of NO3 and OH radicals with a series of cycloalkanecarbaldehydes have been measured in purified air at 298 +/- 2 K and 760 +/- 10 Torr by the relative rate method using a static reactor equipped with long-path Fourier transform infrared (FT-IR) detection. The values obtained for the OH radical reactions (in units of 10(-11) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 2.13 +/- 0.05; cyclobutanecarbaldehyde, 2.66 +/- 0.06; cyclopentanecarbaldehyde, 3.27 +/- 0.07; cyclohexanecarbaldehyde, 3.75 +/- 0.05. The values obtained for the NO3 radical reactions (in units of 10(-14) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 0.61 +/- 0.04; cyclobutanecarbaldehyde, 1.99 +/- 0.06; cyclopentanecarbaldehyde, 2.55 +/- 0.10; cyclohexanecarbaldehyde, 3.19 +/- 0.12. Furthermore, the reaction products with OH radicals have been investigated using long-path FT-IR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). The measured carbon balances were in the range 89-97%, and the identified products cover a wide spectrum of compounds including nitroperoxycarbonyl cycloalkanes, cycloketones, cycloalkyl nitrates, multifunctional compounds containing carbonyl, hydroxy, and nitrooxy functional groups, HCOOH, HCHO, CO, and CO2.


Subject(s)
Aldehydes/chemistry , Alkanes/chemistry , Atmosphere/chemistry , Air Pollutants/chemistry , Cyclization , Hydroxyl Radical/chemistry , Kinetics , Molecular Structure , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
16.
Environ Pollut ; 127(3): 403-10, 2004.
Article in English | MEDLINE | ID: mdl-14638301

ABSTRACT

Dimethylsulphide (DMS) gas phase oxidation with OH radicals was investigated by long path FT-IR spectroscopy and by ion chromatography (IC) and HPLC-MS2 to quantify the reaction products and evaluate heterogeneous processes. The experiments were performed considering two different NOx (NO2+NO) levels. The initial concentration of NO2 was varied from 24 ppbV (NOx=1 ppmV) to 953 ppbV (NOx=10 ppmV). Photolysis of H2O2 was used as the OH-radical source. SO2, dimethylsulphoxide (DMSO), dimethylsulphone (DMSO2), methanesulphonic acid (MSA), methanesulphinic acid (MSIA) and methane sulphonyl peroxynitrate (MSPN) were identified as the main sulphur-containing products. The results indicate that higher NOx levels play a significant role in the chemistry of CH3S(O)x radical, influencing both the SO2/MSPN ratio and the amount of the sulphur species in the condensed phase, and that the NO2/NO ratio could influence the trends in the molar yields of the different products. For this reason the NOx content results a limiting parameter when on measure DMS in atmospheric environment.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring/methods , Hydroxyl Radical/chemistry , Sulfides/chemistry , Aerosols , Chromatography, Ion Exchange , Climate , Dimethyl Sulfoxide/chemistry , Nitric Oxide/chemistry , Nitrogen Dioxide/chemistry , Photochemistry , Spectroscopy, Near-Infrared
17.
Nature ; 426(6963): 157-9, 2003 Nov 13.
Article in English | MEDLINE | ID: mdl-14614499

ABSTRACT

The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).

18.
Nature ; 423(6942): 847-50, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12815425

ABSTRACT

Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

SELECTION OF CITATIONS
SEARCH DETAIL
...