Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38592816

ABSTRACT

In this paper, a sequence (1979-2022) of a long-term trial established in Lukavec in 1956 (Czech Republic) focusing on the effect of weather, various nitrogen (N) fertilization methods (control, PK, N1PK, N2PK, and N3PK) and preceding crops (cereals, legumes, and oil plants) on winter wheat grain yield is presented. The weather significantly changed at the site of the long-term trial. While the trend in the mean temperature significantly increased, precipitation did not change significantly over the long term. Four relationships between weather and grain yield were evaluated to be significant: (a) the mean temperature in February (r = -0.4) and the precipitation in (b) February (r = -0.4), (c) March (r = -0.4), and (d) May (r = 0.5). The yield trends for all the fertilizer treatments increased, including the unfertilized control. The N3PK treatment provided the highest mean grain yields, while the unfertilized control had the lowest yields. Comparing the preceding crops, the highest yields were harvested when the wheat followed the legumes. On the other hand, the cereals were evaluated as the least suitable preceding crop in terms of grain yield. According to the linear-plateau model, the optimal nitrogen (N) dose for modern wheat varieties, following legumes and under the trial's soil climate conditions, was 131 kg ha-1 N, corresponding to a mean grain yield of 8.2 t ha-1.

2.
Plants (Basel) ; 12(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36987080

ABSTRACT

Within the framework of a long-term experiment, established in 1955, we evaluated the development and effects of weather and mineral fertilization (Control, NPK1, NPK2, NPK3, NPK4) on the yield and stability of winter wheat following alfalfa. In total, 19 seasons were analysed. The weather changed considerably at the experimental site. Significant increases in minimal, mean, and maximal temperatures were dated to the period 1987-1988, while precipitation remained the same to this day (insignificantly increasing trend by 0.5 mm per annum). Rising temperatures in November, May, and July positively affected wheat grain yield, especially in treatments with higher N doses. No relationship between yield and precipitation was recorded. Highest inter-annual yield variability was recorded in Control and NPK4 treatments. Although minerally fertilized treatments provided slightly higher yields, the difference between Control and NPK treatments was insignificant. According to the linear-plateau response model, the recommended dose of 44 kg ha-1 N corresponds with yield of 7.4 t ha-1, while Control provides an average yield of 6.8 t ha-1. The application of higher doses did not lead to significant grain yield increase. Alfalfa as a preceding crop reduces the need of N fertilization and contributes to sustainable conventional agriculture, however, its share in crop rotations is decreasing both in the Czech Republic and in Europe.

3.
Plants (Basel) ; 11(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890459

ABSTRACT

Based on a long-term experiment in Prague, established in 1954, we analyzed the effect of weather and seven fertilization treatments (mineral and manure treatments) on winter wheat grain yield (GY) and stability. In total, 23 seasons were analyzed, where a wheat crop followed a summer crop of potatoes. A regression analysis showed that, since the experiment started, there has been a significant increase in the annual daily maximum, average, and minimum temperature of 0.5 °C, and an increase in annual rainfall of 0.3 mm. Grain yield was positively associated with April precipitation, mean daily temperature in October, and daily maximum temperature in February. Yields were most stable between years with two fertilizer treatments that supplied a mean of 47 kg N ha-1yr-1, 54 kg P ha-1yr-1, and 108 kg K ha-1yr-1. The rate of N at which grain yield was optimized was determined according to the linear-plateau (LP) and quadratic response models as 44 kg N ha-1yr-1 for the long-strawed varieties and 87 kg N ha-1yr-1for short-strawed varieties. A gradual increase in yields was observed in all treatments, including the unfertilized control, which was attributed to improved varieties rather than to a changing climate.

4.
Plants (Basel) ; 11(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807612

ABSTRACT

Increasing the efficiency of nitrogen use (NUE) from mineral fertilizers is one of the most important priorities of modern agriculture. The objectives of the present study were to assess the role of different nitrogen (N), phosphorus (P) and sulfur (S) rates on maize grain yield (GY), crop residue biomass, NUE indices, N concentration in plants during the growing season, N management indices and to select the most suitable set of NUE indicators. The following factors were tested: band application of di-ammonium phosphate and ammonium sulphate mixture (NPS fertilizer at rates 0, 8.7, 17.4, 26.2 kg ha-1 of P) and different total N rates (0, 60, 120, 180 kg ha-1 of N). In each year of the study, a clear trend of increased GY after NP(S) band application was observed. A particularly positive influence of that factor was confirmed at the lowest level of N fertilization. On average, the highest GY values were obtained for N2P3 and N3P1 treatments. The total N uptake and NUE indices also increased after the band application. In addition, a trend of improved N remobilization efficiency and the N contribution of remobilized N to grain as a result of band application of NP(S) was observed. Among various NUE indices, internal N utilization efficiency (IE) exhibited the strongest, yet negative, correlation with GY, whereas IE was a function of the N harvest index.

5.
Plants (Basel) ; 10(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34834837

ABSTRACT

If available to farmers, potatoes represent a crop classically fertilized with farmyard manure in the Czech Republic. At the same time, potatoes are a crop sensitive to soil-climate conditions. We evaluated the effect of cattle manure (FYM), manure and mineral nitrogen (FYM + N1, FYM + N2), manure and mineral fertilizers (FYM + N1PK, FYM + N2PK, FYM + N3PK) application and the effect of three soil-climatic conditions (Caslav-maize production area with degraded Chernozem, Ivanovice-maize production area with Chernozem, Lukavec-potatoes production area with Cambisol) over four years (2016-2019) on potatoes yield and soil chemical properties. Of all the factors, yields were most affected by location. Lukavec provided the highest average yields (37.2 t ha-1), followed by Ivanovice (23.5 t ha-1) and Caslav (15.5 t ha-1). The second most important factor was the climatic conditions of the year. Fertilization was the third most important parameter. FYM significantly increased yields compared to Control, but applied alone cannot cover the needs of potatoes. Similarly, the application of FYM and N increases yields, but for the highest yields, it is best to apply FYM + NPK (80 kg ha-1 N). Co-application of FYM and mineral N fertilizers mitigates the negative impact of mineral N on soil pH.

6.
Environ Sci Pollut Res Int ; 27(5): 4769-4785, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31845241

ABSTRACT

Concentration of trace metals (TMs) is one of the most crucial factors determining the quality of cereal grains. The aim of this study was to evaluate the effect of digestate, manure, and NPK fertilization on TM concentration in grains and straw of two cereal crops-winter wheat (WW) and spring barley (SB)-and TM transfer from soil to plants. The experiment was carried out between 2012 and 2016. Every year, the same treatment was used on each plot: control (without fertilization), digestate, digestate + straw, cattle slurry, and mineral NPK fertilization. In general, fertilization increased the concentration of TMs that belong to the micronutrient group (Zn, Cu, Fe), particularly after application of digestate and cattle slurry. At the same time, fertilization, regardless of the fertilizer type, led to an increase in Cd concentration in the grain of WW in comparison with the control. Despite the increase in Cd and micronutrient content as a result of fertilization, the concentration of elements remained below the applicable standards. Among TMs, only Pb content exceeded the European Union limits. The increased concentration of Pb was, however, an effect of other factors, rather than fertilization. The results clearly indicated that the biogas digestate from anaerobic codigestion of cattle slurry and agricultural residue could be utilized as fertilizer in agricultural applications without a risk of contaminating the food chain with TMs.


Subject(s)
Fertilizers , Hordeum , Metals/chemistry , Minerals/chemistry , Animals , Cattle , Hordeum/metabolism , Manure , Minerals/metabolism , Soil , Triticum/metabolism
7.
Environ Monit Assess ; 191(11): 661, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31650240

ABSTRACT

Though not litigable in most European countries, portable X-ray fluorescence spectrometers (pXRF) provide cost- and time-effective as well as prompt information about hot spots of inorganic soil contaminants. The quality of aqua regia analysis of contaminants can be approximated by a thorough sample preparation, i.e., homogenization, grinding, and sieving of the examined soil before pXRF measurement is carried out. However, elaborate sample preparation causes a trade-off in terms of the desired straightforwardness of the pXRF method. For a first assessment of the in situ accuracy of pXRF measurements, two equal pXRF devices were used in parallel to determine the contents of As, Cu, Fe, Mn, Pb, Rb, Sr, Zn, and Zr of 9 identical points of a riparian soil profile. Maximum measurement values were not restricted to one pXRF device, but changed from element to element. Pearson correlation coefficients of the parallel measurements varied between 0.07 (Cu) and 0.80 (Zn), reflecting small-scale heterogeneity of the soil constituents as well as element-specific interferences. For each element, overall deviations between measurement parallels were expressed as the root-mean-square error (RMSE) and contrasted against the element-specific information depth in soil, i.e., the depth interval, from which the received spectral signals originate. From this, a gradual relation could be derived: The greater the information depth, the more stable the measured element value turns out. This context should be taken into account, when interpreting contents of elements with small atomic numbers.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Metals/analysis , Soil Pollutants/analysis , Soil/chemistry , Europe , Spectrometry, X-Ray Emission/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...